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Abstract— This paper presents the inverse optimal design according to the given communication topology (and the
method of a nonlinear distributed consensus protocol for designed protocol), so the aforementioned difficulties lwan
formation control of multiple mobile robots. Both dynamics — 4jeviated. The researches on the design of inverse optimal

and kinematics are considered in the protocol design. First tocol f inale int tor d . be f din 112
we propose a state transformation method to obtain a proper protocol for single integrator dynamics can be found in [12]

consensus model of a mobile robot. Then, the inverse optimal [13], where Cao and Ren [13] suggest both the control
protocol is designed with respect to a meaningful cost funain  gain and the adjacency matrix of the graph that guarantee

under the assumption of perfect angular velocity tracking. the inverse optimality. Furthermore, the recent work [14]
The assumption will be relaxed by extending the inverse yon6 by Movric and Lewis provides the consensus protocol

optimal protocol using the backstepping and Lyapunov’s diect f Ll d - hich ¢ the i
methods. The numerical simulation is carried out to verify the or general finear dynamics, which guarantees the inverse

effectiveness of the proposed method. optimality on the directed graph topologies.
The formation consensus protocols of multiple mobile
. INTRODUCTION robots are mostly designed based on the linear consensus

Formation control of multiple mobile robots have receiveéheory by virtue of _dynam_lc feedback .I|near|zat.|on (], .115
t%at converts the kinematics of a mobile robot into a simple

much attention for many years, and various approach% .
such as behavioral methods [1], [2], virtual structure [3], ouble integrator. In [16] and [17], the authors proposed

[4], leader-follower [5], [6], and graph-theoretic techues honlinear cooperative formation protocols of mobile rabot

[7], [8] have been developed. Among these approaches fﬁy emplqying backstepping and consensus theory for non-
formation control, graph-theoretic technique has the éggh olonomic systems [17]. However, most of the formation

degree of freedom of communication among the mob"é;nsensus methods for mobile robots did not consider the

agents; while the others are designed with a pre-determin namics tthatthdrlt\)/est thetr:/elqclfy |n|pudts Oftrﬁhe Klnematlcsit
fixed (perhaps complex) communication topology, graph- oreover, fo the best authors: knowledge, there 1S no resu

theoretic approaches allow to have arbitrary structure &nbt?et;o;matlon tconsterz]nsus ?rotoc_ol for mul;c_lplel_ml?ne
communication networks that is described by a digraph0 ots that guarantees the nonlinear inverse optimalithe

(directed graph) and satisfies some required properties. Wr:glfh?sloszdélf (\)/\I/Deml:(ljtl ?g: r: gi};St:iebrgied nonlinear protocol
On the other hand, the studies on the formation contr?cl) Paper, prop P

) . . . . r formation consensus of multiple mobile robots; the
of multiple vehicles in graph-theoretic perspectives amal t . . . .
. rotocol is guaranteed inverse optimal under the simple
related consensus protocols were mainly done under the as-

sumption that the dynamics of each mobile agent is model japh Laplacian and the perfect angular velocity tracking

by a linear system [7]—[14]. Moreover, in the case of optimai! uation, and is demgngd by con5|d_er|ng both dynamics and
. . . inematics of the mobile robots. First, we propose a state
consensus algorithms, there is no research rfonlinear

: ) . transformation technique to derive a proper consensusimode
multi-agent systems to the best authors’ knowledge. This |S ) . . .
. e - . rom the kinematic and dynamic models of a mobile robot.
mainly due to the difficulties arising from the constraints o : . :
Based on that and the work in [14], the nonlinear inverse

the communication topology of the group of mobile agents: "~ . : .
Even for the linear optimal consensus protocols [9]—[18, t optimal protocol is designed under the assumption of perfec

optimality of the proposed protocols has not been proven uangular velocity tracking, and extended by backstepping

P y proposed p proven c%ntrol method to relax the assumption and yield the actual
to date due to those difficulties related to the communmanodrivin toraue inbut of the anaular velocity. The condition
constraints. This problem can be solved by designing thfe g forq P 9 Y-

o oo . or Lyapunov’s stability and inverse optimality with regpe
consensus protocols with inverse optimality. In this cése, yapuna Y . P YV P
L : ) ; . ~" to a meaningful cost function are mathematically shown
minimizing performance index is determined posteriori T ! .
when the graph Laplacian is simple. Finally, the numerical
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[1,1,---,1]7 € R" is the vector whose elements are allthe control torque inputs applied to the robot’s left andtig
equal to ‘1’. For a square matriZ € R"*™, X\;(Z) denotes wheels, respectively. > 0 is the damping coefficienf2 > 0

the i-th eigenvalue ofZ with |\;(Z)| < |\i+1(Z)] for i = is the half of the width of the mobile robot, and the constant
1,2,---,n—1.Z = 0,x, (resp.Z = 0,,«,,) indicates that « > 0 is defined bya := r?m.d/2, wherer is the radius

Z is positive definite (resp. positive semi-definite). For anyf the wheel,d is the distance from the center of maBs

Z > 0,,%n, Amax(Z) is the maximum eigenvalue &, i.e, of the robot to the middle point between the right and left
Amax(Z) := M (Z); Acomin(Z) means the minimum among wheels, andn,. is the mass of the body of the mobile robot.

the positive eigenvalues &. The effective masses;; andmys are given by
II. GRAPH THEORY {mu =1, +r*(mR*+1)/4R?
— 2 2 2
In this paper, the communication network among the |""12 =" (mR° —1I)/AR

mobile robots is described by a weighted digraph (directed (I = m.d? + 2m,R? + I. + 2I,,, m = m. + 2my,),
graph)g = {N, &, A}, whereN := {1,2,3,--- , N} is the
node set£ denotes a subset o x N called the edge set,
and A = [a;;] € RV*N s the weighted adjacency matrix
with its elementa;; > 0 if (j,7) € £ anda,;; = 0 otherwise.
The neighboring setV; of a node: € N is defined by
N, :={jeN:(ji) € £} It is assumed that the digraph
g is simple,i.e,

wherem,, is the mass of a wheel,, I,,, andI,, are the
moment of inertia of the body about the vertical axis through
Py, the wheel about the wheel axis and the wheel diameter,
respectively.

To derive the useful model, note that the velocities of the
mobile robot(v;, w;) and the angular velocities of the wheels
(wr i, wr,;) satisfy
Assumption 1:i ¢ N;, Vi € N. {

Define the out-degree matri® and the graph Laplacian
matrix L asD := diag{dy, da, - ,dy} with d; = 37 a;;
(¢t € N) andL := D — A, respectively. Note thaL. has
at least one zero eigenvalug (L) = 0 corresponding to
the eigenvectot y. In this paper, we assunieis simple,i.e., Mo = —bv; + aw? + 7,4 4)

vi =r(wr,; +wr,;)/2,
w; = r(wr,; —wri)/2R

®3)

Differentiating (3) with respect to time and substitutir®) (
into the resultant equation yields

. «
Assumption 2:\;(L) # A, (L) for all i,j € \. Myt = —bRwi — Zviw; + Tu,i ()

A digraphg is said to bedetailed balancedf and only if ~whereM,, My, 7, ;, andr, ; are defined by

foralli,5 € N, (i) a;; > 0 < a;; > 0, and (ii) there exist
J ) ayy ? (i) {Ml i=mi1 +miz, M :=R-(mi —mia),

Ty, = T‘(TRJ' + TLJ')/Q, Tw,i = T‘(TRJ' — TLJ')/QR.

Now, differentiatingz and y in (1) and substituting (4),
we have

positive constantg;’s such thatg;a;; = 5;a;;.

Proposition 1 ([14]): If the digraphG satisfies Assump-
tions 1 and 2, then there exiSt= Oxxny andR = Onx N
such thatS = RL. Moreover, ifG is detailed balanced, then
R can be chosen as a diagonal matexg, R = IT, where ~ M1i@; = Myv; cos0; — Myvw; sin0;

IT := diag{B1, B2, - - , Bn } =(—bv+ aw? + Tu,i) - cosb; — Myv;w; sin b;
Mlyz = Mlul sin@i + Mlul-wl- COS 91
IIl. DYNAMIC MODEL OF MOBILE ROBOTS = ( — by; + aw? + TM) -sin 0; + Myv;w; cos6;.
The kinematic and dynamic models of eacth mobile Rearranging these equations, we finally obtain the follgwin
robot shown can be represented as follows [18]. nonlinear consensus dynamic model of the mobile robot:
Kinematic: 4 = Vi (6)
& v; cos 0; Vi = T(0;, )y
Yi| = |visind; 1) whereq; € R? andv; € R? are defined asy; := [x;, v:]7
0i Wi andv; := ¢;, respectivelyu; € R? is the effective control
Dynamic: input defined by
mir Mmiz| |WiR b R | |WiRr| _ |Ti.R w = | = | bvi + aw; @)
H + aw; - ‘ U2 . w; ’
miz  mii| |Wir - b | |wir Ti,IL it i
(2) andT(6;,v;) is the transformation matrix given by
where [z;,y;]7 € R? and6; € R are the position and the T(6;,v;) = L {C.OS 0y —Mv;sin 91} , 8)
angle orientation of théth mobile roboty; € R andw; € R My [sin6;  Myv;cosb;

are linear and angular velocities of tixth robot;w; ;, € R For the invertibility of T(6;,v;), we assume throughout the
andw; r € R denotes the angular velocities of the left anchbaper that
right wheels of the robotr; . € R andr; r € R represents Assumption 3:v; # 0 for all i € V.



IV. DESIGN OFINVERSEOPTIMAL DISTRIBUTED Theorem 1:Consider a digrapf = {N, £, A} satisfying
FORMATION CONSENSUSPROTOCOL Assumptions 1-2 and the group of mobile robots (11) with

In this section, we design the distributed formation conserin® qontrTC)I (12) unggrx,jﬁsumption 3. Define the symmetric
sus protocoly; in (6), which is inverse optimal with respect Matrix ®° = ® € R as
to the cost function givea posteriori DefineI(v;) = Oax2

N 1 T T
fori € N as <I>-—S®Q+;(0-L RL - S) ® (PB,B{ P),

T'(v;) := vy - diag{1/M?, v?}, (9) whereS and R are given in Proposition 1 wit!$ = RL.

. . _ . Assume that the positive constant- 0 in (12) is sufficiently
where~ > 0 is a positive constant. We start our d|s<:u35|or|1!,j“ge so that

with the following two lemmas that dramatically simplify
the analysis, and are obvious by the definitionslgd;, v;) ¢ > Amax(S)/Asomin(LTRL). (15)
andT'(v;) given in (8) and (9), respectively.

Then,
Lemma 1:Vv; € R\ {0}, I'(1;) is positive definite. 1) the formation consensus is reached under (12);
Lemma 2:Vy; € R\ {0} andV0; € R, 2) & is positive semi-definite;
T, )T () TT (01, v5) = v - L. 3) the protocol (12) minimizes the performance index
> T T
Now, define the state variable € R* for i-th robot as J(x(0),u) = /O <C'X ex+vp' (R® I2)“> dt,
qi —d; (16)
X; 1= [ v, ]7 (10) where u = [puf pd---p% )" € R?V is the global
nonlinear control input in whichs, € R? (i € N) is
whered; € R? is the distance vector of théth robot defined asu; := T(6;, vi)u;;
describing the desired formation. Differentiating (10)dan 4) the optimal value functiofr*(x(0)) := min,, J(xq, u)
substituting (6), we obtain the following dynamics: is given by
%; = Ax; + B(0;, vi)u, (11) V*(x(0)) = ¢-x7(0)(S ® P)x(0). (17)

where A andB(6;,v;) are defined as

02x2 I 02x2
A = ,B 91', i) — .
|:02><2 02x2] (6i,v4) [T(Gz‘, Vz)]

Proof: From Lemma 2 and (13), we have

T(I/i, Hl)K(Gl, I/i) = lBgP,
For the system (11) and a given digragh= {N, £, A}, ’1Y "
we propose the following inverse optimal protocol for for- B(vi, 0:)K(6;,v:) = ;BoBo P.
mation consensus:
So, by the definition ofy; in (12) andu; = T(0;, v;)u;, we

u; = —CK(@i,I/Z') Z aij(xi — Xj) (12) have
JEN: pi=—=-BIP Y ay(xi —x;), (18)
wherec > 0 is a constant an& (¢;, ;) is given by v JEN;
K(0;,v;) :== T ' (1;) BT (0;,15)P. (13) and the system (11) can be expressed in termg,ais
P is the solution of the algebraic Riccati equation (ARE): x; = Ax; + Bop;. (29)

ATP + PA — lPBOBOTP +Q =044 (14) Following the similar procedure to [14, Theorem 2] with (18)
v and (19), we can see that¥ given by
for By € R**2 defined aBB := [02x2 I>]7, and a positive 1 1
definite matrixQ € R2*2. Here, the existence df ' (v;) U:=cALe - -BP) (ReyL)(L® - ByP)
in (13) is guaranteed by Assumption 3 (see Lemma 1). 7 7
From (10), we can see that if the formation consensus

is reached under Assumption 8¢, if q; —q; = dij s positive semi-definite, then the formation consensus is

and 0 # vi = v;, Vi,j € N, whered;; := d; —d;, reached under the protocpl; (or equivalently,u; in (12))
then the group of mobile robots moves with the sam@ .i minimizes the performance index

group velocity, and achieves the desired formation. For
notational convenience, we will use the global state vector
x:=[xI x¥ .- x% T € R*" throughout the paper

including the following theorem that states stability and

- L and the optimal value functiol*(x(0)) is given by (17).
inverse optimality of the protocol (12). Using the properties of Kronecker products and substiutin

—c¢(RL® (ATP + PA)) (20)

j(xo,u):/ (xT\le—i-'y-uT(R@Ig)u) dt,
0



the ARE (14) andS = RL, we can prove the equivalence Proof: Since the digraply is detailed balanced, we
“¥ = c¢®” as shown below: can choose in Theorem 1 aR = diag{f1, B2, - ,On}
PBOTBOP) - by Proposition 1. This implies

R ® I = blockdiag{11a, B212, - - - , Bn1a},
T T
= C{LTRL ® w} + [S ® (Q - w)] so the input-term4 - p” (R @ Iy) " in (16) becomes
Y Y
1 T T N N
- ;(C 'L'RL-S)@PBB P)+5©Q=2. v (RL)p="- Zﬂiﬂ?/"i = Zﬂiufl“(t%, vi)ug,

i=1 i=1

v c(LTRL® (RL® (ATP + PA))

C

This implies the equivalence of the two performance indices . Lo -
J(x0,1) and J(xo, u). S0, it remains to show thab (— where we have substituted the equalities= T(6;, v;)u;

. - e and yT7(0;,v;)T(0;,v;) = T(6;,v;) (see Lemma 2). So,
W/c) is positive semi-definite under (15). we obtain (24) from (16), which completes the proof. m
To complete the proof, we now prove

V. EXTENSION BY BACKSTEPPINGDESIGN
STR™!IS - S = Oyxn (21) . .
To determine the actual torque inpuis; andr; ;, of each

under (15), which obviously implie® > Oyxn (see the mobile robot (1)—(2), we should derive each angular torque
definition of & and notice thaB” R~!S = L”RL). control 7; ,, in (5) as well as the linear torque contrgl,
1) Proof of “ker(S) = ker (S’R~'S)”: Assumption 2 already given in the previous section. In this section, we us

implies that the zero eigenvalué™of the graph Lapla- the backstepping technique with the-dynamics (5) and the
cian matrixL is simple. From this an® = RL, we inverse optimal control scheme shown in Section IV to derive

have eachr; ,,. First, note that the dynamics (11) of a mobile robot
rank (S) = N — 1. (22) can be rewritten as
5(1' = AXl' —+ B(Gl, Vl') [uiyd —+ ﬁl] y (25)

In addition, (22) andank (R) = N imply
T 1 whereu, 4 is the target control input to the system (25) and
rank (S R S) =N-1L (23)  gefined asy; g = |7, — bvi + aw?, w; 4]7 for the desired
Next, for a nonzero vecter € R, suppose € ker (S) angular velocityw; 4; @; is defined byw; := [0, @; |7 with
s0Sz — 0y holds. Then, we hav87R~'Sz = 0 the angular velocity errot; := w; — Wi d- We also Qenote
and therebyker (S) C ker (STR-'S). This yields W = [@] @3 ---wy]" € R" for notational convenience.
ker (S) = ker (STR*TS) since (22) and (23) imply The objective of the backstepping design is to derive the
nullity (S) = nullity (STR*S) -1 angular torque controt; ,, that drivesw; to asymptotically

2) Proof of (21) SinceS andS”R~'S are positive semi- make _the angular velortlzlty (:]rrof;i zero and. ach|evebthe
definite, the zero eigenvalue is the minimum among thiPrmation consensus when the target inpyf; is given by

eigenvalues of the matrices. Therefore, fore RY wa=—cK(0;, 1) Z ai; (xi — x;) (26)
satisfyingSy # 0y, the inequality " v = R
c-yI'STR™ISy > ¢ Aogmin(STRIS) - ||y according to the inverse optimal protocol (12). Now, let
> Anan(S) - iy |2 > yTSy >0 Ha o € R bedefined ap, = [y piq -y ql" and

_ o= ] pg -y )" with g g, o, € R? (i € N) given
holds by (15); from this andler (S) = ker (S"R™'S), by p, ; := T(6;,v;)u; 4 andfi; := T(6;, v;){;, respectively.
we conclude that (21) is satisfied whenever (15) holdsthen, (25) and (26) can be rewritten as

| .

. . . i = Ax; + Bo|p; THN 27
If the digraphg is detailed balanced, then the performancé( *i + Bo [,u At ] N 27)
index (16) in Theorem 1 can be rewritten in a more tractable ¢ _ 1 e L c e
form as shown in the next theorem. Hia=—7 By P %\; aij (X; — x;) = 5 2; lij By Px;.
J i J=

Theorem 2:Suppose the digrap§ is detailed balanced. - _ _ _
Then, under the same conditions of Theorem 1, (16) can §&mbining the control inputg, , and the dynamic equations

expressed as (27) Vi € N, we obtain
- N y = —— - (LeBIP)x,
J(x(0),u) = / (c.xT<I>x + Zﬁiu?I‘(Hi,Vi)ui) dt, v 3
0 i=1 (24) x=(In @ A)x+ (Iy ® Bo) [pg + /2]
. . . . ) =A I Bo)i, 28
wheres; > 0 (i € NV) is defined in Proposition 1 and satisfies x+ (Iv ® Bo)it (28)
Biaij = Bjaj; forall i,5 € N. whereA := (Iy ® A) — ¢ (L ® B,BIP)/~. For the design

and analysis, we essentially need the following lemma, kvhic



can be easily proven by considering the inverse optimalicherefore,f/ is negative definite i<, ; > 0 and ks ; > 1,

given in Theorem 1 (see [14] for more discussions).

which becomek; ; > 0 andky; > ¢ > 0 by the definition

Lemma 3:Under the same conditions of Theorem 1, thef x; ; andk. ;. Sincee can be any value if0, 1], the latter

following global ARE holds:
AT(S®P)+(S®P)A
S % (S®P)(Iy ®Bo)(Iy ® Bo)'(S®P).

condition impliesk,; > 0, so the proof is completed by
Lyapunov’s theorem for partial stability [14]. |

VI. SIMULATION RESULTS
To verify the performance of the proposed protocol (26)

Theorem 3:Consider a group of mobile robots describedhnd (29) designed with the inverse optimal consensus and the

by (25) for eachi € A/ and a digraptg = {N, &, A}. Let
eachr, ; be given by

Tw,i = (bR + % Vi)wi + M2 wi,d - (kl,i + kQJ-Vl-z)lDi (29)

backstepping control methodologies, respectively, weear

out a numerical simulation with the three mobile robots
WV = {1,2,3}) whose kinematic and dynamic models are
given by (1) and (2), respectively. In the simulation, the

for someks ;, k2; > 0. Then, under the same conditions ofparameters of the mobile robots are givenM®y-= 0.75 [m],
Theorem 1, the virtual and actual control inputs (26) and (29 = 0.3 [m], » = 0.15 [m], m. = 30 [kg], m.,, = 1 [kg],
asymptotically stabilize the closed-loop system consisti /. = 15.625 [kg-m?], I, = 0.005 [kg-m?], I,, = 0.0025
of all of the i-th subsystems (5) and (25) to the formatiorfkg-m?], andb = 2 [m]; we considered a detailed balanced

consensus error spa€edefined as

Q= {(x,W) e R*V N . x c ker (L) ,w; = w; q}.

Proof: ConsiderV*(x) = c¢-xT (S®P)x given in (17).
Letting z := ¢(Ix ® Bo)” (S ® P)x, differentiatingV* (x)

with respect to the system (28), and using Lemma 3, wi

obtain
Vix)=c-xT|AT(S@P)+ (S@P)A|x+22"[
1
=—c - x'®x— =~ |z|* + 22T fa.
Y
Applying Young's inequality2z” i < 4~ -1z]2 + ~ - | il

using Lemma 2 with the substitution @f, = T(6;, v;)q;,
and rearranging the result wifiy = [0, @; |7 and (9) yields

N
V*(x) < —cxTdx + Z ﬁlT <7TT(91-, v;)T(0;, I/Z)> 1,

i=1

=TI'(v;)by Lemma 2

N
= —cx'®x+ - g vin?.
i=1

(30)

Now, consider (x, w) = V*(x) + 2 - 31 | Myw? with

graphg with its graph Laplacian matrif. given by

05 —05 0.0
L=|-04 06 -02],
0.0 -20 20

hich obviously satisfieS = RL in Proposition 1 withR. =
iag{1,2, 1}, and gives the inverse optimality condition-
2.2978 by (15). From this, we choose= 3. The matrixQ
and the positive constantin the ARE (14) are sett@ = 1,
and~ = 1. The positive gaing; ; andk; o in (29) are given
by ki1 = ki2 =5 foralli € {1,2,3}. Initial positionsp} =
(2:(0),:(0),6,(0)), initial velocities €2 = (1;(0),w;(0)),
and the distance vectods of the mobile robots are

p) = (0,0,7/6), £ =(2,0), d; =[3.0, 0.0]7,
p9 = (0,1,0), €)= (1,0), do=1[0.0, 0.3]7,
p§ = (1,0,-7/6), & = (3,0), d3 =1[0.0, -0.3]".

The simulation results are shown in Figs. 1 and 2, where
Fig. 1 describes the position trajectories of mobile robots
in zy-plane, and Fig. 2 illustrates the variations of mobile
robots’ linear and angular velocitig;, w;). As shown in
Figs. 1 and 2(a), the mobile robots driven by the proposed
protocol (26) and (29) shape and maintain the desired

¢ € (0,1] as a Lyapunov function candidate. Differentiatingtormation, and ultimately move with the same consensus

V(x,w) along the trajectory generated by the systems (S)|ocities and angle orientations. In case of the angular

and (28) and substituting (30), we obtain

N
V(x,W) < —cxT®x + - Z (1/121[)12 +
i=1

J\/[Q ~ L )
- WiW;

N
=—cx'dx + v - Zu?l . [V?u?l
i=1

1
+ -

( — bRw; — gI/iwi + Tw,i — MQwi,d)] (31)
€

R
Define K1,i, K2,i > 0 as K1, 1= kl,i/g and Ko = kg,i/&'.
Then, substituting (29) into (31) yields

N
V(X,\i’) S —CXT@X - Z </§1,i + (K/Q,i — 1)1/3) ’LZ)Z2

i=1

velocity commanduw;, it converges to zero as shown in
Fig. 2(b). This is because the desired angular velogity
becomes zero when the formation consensus is reached so
that x € ker(L®14), and r;,, is designed to achieve

w; — w;q ast — oo; So, after the consensus is reached,
there is no change in the angle orientatiprof each mobile
robot (see Fig. 1).

VII. CONCLUSIONS

In this paper, we presented a state transformation tech-
nigue by extending the dynamic feedback linearization to
obtain a proper consensus model from the kinematics and
dynamics of a mobile robot. Then, using the properties of
the transformed model, inverse optimal consensus theory,
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and backstepping, a nonlinear distributed protocol was de- i - - -w fﬂ' Hmﬂe m{m:g
. . . . N . ++ wjg for mobile robot
signed for formation consensus of multiple mobile robots. 3 : 1
By mathematical analysis, we provided the conditions for :
Lyapunov’s cooperative stability and inverse optimalitighw 4 1
respect to a meaningful cost functiom,g, the required R
consensus gain inequality (15), under the directed graph® 1r: - :
communication topology with a simple graph Laplacian. The & | -
numerical simulation results supports the effectivenésiseo - o—;/ T I SR —— —
proposed method. A
i ]
REFERENCES b
-1
[1] T. Balch and R. C. Arkin, “Behavior-based formation cahtfor 2 : : : ‘ : ‘ : : ]
multirobot teams,’|EEE Trans. Robotics and Automatiowol. 14, o et 2 ‘HZ'S 3003 4 4
no. 6, pp. 926-939, 1998. e s
[2] J. R. T. Lawton, R. W. Beard, and B. J. Young, “A decenpedi (b) Trajectories of angular velocities;
approach to formation maneuverdEEE Trans. Robotics and Au-
tomation, vol. 19, no. 6, pp. 933-941, 2003. Fig. 2. Velocity commandgv;,w;) of mobile robots generated by the

(31

(4

(5]

(6]

(7]

(8]

[0

[10]

[11]

M. A. Lewis and K.-H. Tan, “High precision formation cant of  protocols (26) and (29)—(a) linear velocities, (b) angular velocitiesv;
mobile robots using virtual structures®utonomous Robaqtwol. 4,

no. 4, pp. 387-403, 1997.

K. D. Do, “Formation tracking control of unicycle-type ahile robots . o .

with limited sensing ranges|EEE Trans. Control Systems Technolpgy [12] Z. Qu and M. Simaan, “Inverse optimality of cooperatisentrol for

vol. 16, no. 3, pp. 527-538, 2008. networked systems,” im Proc. 48th IEEE Conf. Decision and Control
J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling amahtcol held jointly with the 28th Chinese Control Conference. COCC

of formations of nonholonomic mobile robotdEEE Trans. Robotics 2009 pp. 1651-1658, %009- . )

and Automationvol. 17, no. 6, pp. 905-908, 2001. [13] Y. Cao and W. Ren, “Optimal linear-consensus algorghran lqr

B. S. Park, J. B. Park, and Y. H. Choi, “Adaptive formatiaon- perspective,”"|IEEE Trans. Systems, Man, and Cybernetics, Part B:

trol of electrically driven nonholonomic mobile robots tvitimited Cybernetics vol. 40, no. 3, pp. 819-830, 2010. ,

information,” IEEE Trans. Systems, Man, and Cybernetics, Part gl14] K. H. Movric and F. L._ Lewis, “Cooperative o_ptlmal contrfor multi-

Cybemetics vol. 41, no. 4, pp. 1061-1075, 2011 agent systems on directed graph topologidEEE Trans. Autom.
P - - . Control, vol. 59, no. 3, pp. 769-774, 2014.

W. Ren et al, “Information consensus in multivehicle cooperative . oo . .

control.” IEEE Control systems magazineol. 27, no. 2, pp 7p1_82 [15] G. Oriolo, A. De Luca, and M. Vendittelli, “WMR controlia dynamic

2007, T R ' feedback linearization: design, implementation, and expntal val-

J. A. Fax and R. M. Murray, “Information flow and coopevaticontrol idation,” IEEE Trans. Control Systems Technolpgypl. 10, no. 6,

‘ . " pp. 835-852, 2002.
g; Vizgge_fgggag%gi IEEE Trans. Autom. Contrplvol. 49, no. 9, [16] W. Dong and J. A. Farrell, “Decentralized cooperatiemtrol of mul-

F. Borrelli and T. Keviczky, “Distributed Iqr design foidentical Sg:e 4nsonnf;oI03nomlc7g%/Es7;\rln(;c ngggems with uncertaintiitomatica
dynamically decoupled systemsiutom. Control, IEEE Transactions o pp. o . -
on, vol. 53, no. 8, pp. 1901-1912, 2008. [17] W. Dong, “Flocking of multiple mobile robots based orckatepping,

; o . IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybiemet
H. Zhang, F. L. Lewis, and A. Das, “Optimal design for sfino- vol. 41, no. 2, pp. 414-424, 2011.

nization of cooperative systems: state feedback, obsemeroutput Cen )

" o [18] B. S. Park, S. J. Yoo, J. B. Park, and Y. H. Choi, “A simptagtive
feedback,"IEEE Trans. Autom. Controbol. 56, no. 8, pp. 1948-1952, control approach for trajectory tracking of electricallyivén non-
2011 _ . . holonomic mobile robots,1EEE Trans. Control Systems Technolpgy
W. Dong, “Distributed optimal control of multiple sysns,” Int. vol. 18. no. 5 1199—1206 2010'

Journal of Contro] vol. 83, no. 10, pp. 2067-2079, 2010. - 6, N0- >, Pp- ’ '



