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Abstract— This paper presents the inverse optimal design
method of a nonlinear distributed consensus protocol for
formation control of multiple mobile robots. Both dynamics
and kinematics are considered in the protocol design. First,
we propose a state transformation method to obtain a proper
consensus model of a mobile robot. Then, the inverse optimal
protocol is designed with respect to a meaningful cost function
under the assumption of perfect angular velocity tracking.
The assumption will be relaxed by extending the inverse
optimal protocol using the backstepping and Lyapunov’s direct
methods. The numerical simulation is carried out to verify the
effectiveness of the proposed method.

I. I NTRODUCTION

Formation control of multiple mobile robots have received
much attention for many years, and various approaches
such as behavioral methods [1], [2], virtual structure [3],
[4], leader-follower [5], [6], and graph-theoretic techniques
[7], [8] have been developed. Among these approaches for
formation control, graph-theoretic technique has the highest
degree of freedom of communication among the mobile
agents; while the others are designed with a pre-determined
fixed (perhaps complex) communication topology, graph-
theoretic approaches allow to have arbitrary structure of
communication networks that is described by a digraph
(directed graph) and satisfies some required properties.

On the other hand, the studies on the formation control
of multiple vehicles in graph-theoretic perspectives and the
related consensus protocols were mainly done under the as-
sumption that the dynamics of each mobile agent is modeled
by a linear system [7]–[14]. Moreover, in the case of optimal
consensus algorithms, there is no research fornonlinear
multi-agent systems to the best authors’ knowledge. This is
mainly due to the difficulties arising from the constraints on
the communication topology of the group of mobile agents.
Even for the linear optimal consensus protocols [9]–[11], the
optimality of the proposed protocols has not been proven up
to date due to those difficulties related to the communication
constraints. This problem can be solved by designing the
consensus protocols with inverse optimality. In this case,the
minimizing performance index is determineda posteriori
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according to the given communication topology (and the
designed protocol), so the aforementioned difficulties canbe
alleviated. The researches on the design of inverse optimal
protocol for single integrator dynamics can be found in [12],
[13], where Cao and Ren [13] suggest both the control
gain and the adjacency matrix of the graph that guarantee
the inverse optimality. Furthermore, the recent work [14]
done by Movric and Lewis provides the consensus protocol
for general linear dynamics, which guarantees the inverse
optimality on the directed graph topologies.

The formation consensus protocols of multiple mobile
robots are mostly designed based on the linear consensus
theory by virtue of dynamic feedback linearization [2], [15]
that converts the kinematics of a mobile robot into a simple
double integrator. In [16] and [17], the authors proposed
nonlinear cooperative formation protocols of mobile robots
by employing backstepping and consensus theory for non-
holonomic systems [17]. However, most of the formation
consensus methods for mobile robots did not consider the
dynamics that drives the velocity inputs of the kinematics.
Moreover, to the best authors’ knowledge, there is no result
on the formation consensus protocol for multiple mobile
robots that guarantees the nonlinear inverse optimality ofthe
whole closed-loop multi agent system.

In this paper, we propose a distributed nonlinear protocol
for formation consensus of multiple mobile robots; the
protocol is guaranteed inverse optimal under the simple
graph Laplacian and the perfect angular velocity tracking
situation, and is designed by considering both dynamics and
kinematics of the mobile robots. First, we propose a state
transformation technique to derive a proper consensus model
from the kinematic and dynamic models of a mobile robot.
Based on that and the work in [14], the nonlinear inverse
optimal protocol is designed under the assumption of perfect
angular velocity tracking, and extended by backstepping
control method to relax the assumption and yield the actual
driving torque input of the angular velocity. The conditions
for Lyapunov’s stability and inverse optimality with respect
to a meaningful cost function are mathematically shown
when the graph Laplacian is simple. Finally, the numerical
simulation is performed to verify the effectiveness of the
proposed method.

Notations. For real matricesX ∈ R
n×m and Y ∈ R

p×q,
X⊗Y is the Kronecker product ofX andY; the null space
of a matrixX is denoted byker (X). Then×m zero matrix
and n × n identity matrix are denoted by0n×m and In,
respectively;0n denotes the zero vector inRn, and1n :=



[ 1, 1, · · · , 1 ]T ∈ R
n is the vector whose elements are all

equal to ‘1’. For a square matrixZ ∈ R
n×n, λi(Z) denotes

the i-th eigenvalue ofZ with |λi(Z)| ≤ |λi+1(Z)| for i =
1, 2, · · · , n − 1. Z � 0n×n (resp.Z � 0n×n) indicates that
Z is positive definite (resp. positive semi-definite). For any
Z � 0n×n, λmax(Z) is the maximum eigenvalue ofZ, i.e.,
λmax(Z) := λn(Z); λ<0min(Z) means the minimum among
the positive eigenvalues ofZ.

II. GRAPH THEORY

In this paper, the communication network among the
mobile robots is described by a weighted digraph (directed
graph)G = {N , E ,A}, whereN := {1, 2, 3, · · · , N} is the
node set,E denotes a subset ofN ×N called the edge set,
andA = [aij ] ∈ R

N×N is the weighted adjacency matrix
with its elementaij > 0 if (j, i) ∈ E andaij = 0 otherwise.
The neighboring setNi of a nodei ∈ N is defined by
Ni := {j ∈ N : (j, i) ∈ E}. It is assumed that the digraph
G is simple,i.e.,

Assumption 1:i /∈ Ni, ∀i ∈ N .

Define the out-degree matrixD and the graph Laplacian
matrixL asD := diag{d1, d2, · · · , dN} with di =

∑N

j=1 aij
(i ∈ N ) and L := D − A, respectively. Note thatL has
at least one zero eigenvalueλ1(L) = 0 corresponding to
the eigenvector1N . In this paper, we assumeL is simple,i.e.,

Assumption 2:λi(L) 6= λj(L) for all i, j ∈ N .

A digraphG is said to bedetailed balancedif and only if
for all i, j ∈ N , (i) aij > 0 ⇔ aji > 0, and (ii) there exist
positive constantsβi’s such thatβiaij = βjaji.

Proposition 1 ([14]): If the digraphG satisfies Assump-
tions 1 and 2, then there existS � 0N×N andR � 0N×N

such thatS = RL. Moreover, ifG is detailed balanced, then
R can be chosen as a diagonal matrix,e.g., R = Π, where
Π := diag{β1, β2, · · · , βN}.

III. D YNAMIC MODEL OF MOBILE ROBOTS

The kinematic and dynamic models of eachi-th mobile
robot shown can be represented as follows [18].

Kinematic:




ẋi

ẏi
θ̇i



 =





νi cos θi
νi sin θi

wi



 (1)

Dynamic:
[
m11 m12

m12 m11

] [
ẇi,R

ẇi,L

]

+

[
b αwi

R

−αwi

R
b

] [
wi,R

wi,L

]

=

[
τi,R
τi,L

]

(2)

where [xi, yi]
T ∈ R

2 and θi ∈ R are the position and the
angle orientation of thei-th mobile robot;νi ∈ R andwi ∈ R

are linear and angular velocities of thei-th robot;wi,L ∈ R

andwi,R ∈ R denotes the angular velocities of the left and
right wheels of the robot;τi,L ∈ R andτi,R ∈ R represents

the control torque inputs applied to the robot’s left and right
wheels, respectively.b > 0 is the damping coefficient,R > 0
is the half of the width of the mobile robot, and the constant
α > 0 is defined byα := r2mcd/2, wherer is the radius
of the wheel,d is the distance from the center of massP0

of the robot to the middle point between the right and left
wheels, andmc is the mass of the body of the mobile robot.
The effective massesm11 andm12 are given by

{

m11 = Iw + r2(mR2 + I)/4R2

m12 = r2(mR2 − I)/4R2

(I = mcd
2 + 2mwR

2 + Ic + 2Im, m = mc + 2mw),

wheremw is the mass of a wheel;Ic, Iw, and Im are the
moment of inertia of the body about the vertical axis through
P0, the wheel about the wheel axis and the wheel diameter,
respectively.

To derive the useful model, note that the velocities of the
mobile robot(νi, wi) and the angular velocities of the wheels
(wL,i, wR,i) satisfy

{

νi = r(wR,i + wL,i)/2,

wi = r(wR,i − wL,i)/2R
(3)

Differentiating (3) with respect to time and substituting (2)
into the resultant equation yields

M1ν̇i = −bνi + αw2
i + τv,i (4)

M2ẇi = −bRwi −
α

R
νiwi + τw,i (5)

whereM1, M2, τv,i, andτw,i are defined by
{

M1 := m11 +m12, M2 := R · (m11 −m12),

τv,i := r(τR,i + τL,i)/2, τw,i := r(τR,i − τL,i)/2R.

Now, differentiatingẋ and ẏ in (1) and substituting (4),
we have

M1ẍi = M1ν̇i cos θi −M1νiwi sin θi

=
(
− bνi + αw2

i + τv,i
)
· cos θi −M1νiwi sin θi

M1ÿi = M1ν̇i sin θi +M1νiwi cos θi

=
(
− bνi + αw2

i + τv,i
)
· sin θi +M1νiwi cos θi.

Rearranging these equations, we finally obtain the following
nonlinear consensus dynamic model of the mobile robot:

{

q̇i = vi

v̇i = T(θi, νi)ui

(6)

whereqi ∈ R
2 andvi ∈ R

2 are defined asqi := [xi, yi]
T

andvi := q̇i, respectively;ui ∈ R
2 is the effective control

input defined by

ui ≡

[
u1,i

u2,i

]

:=

[
τv,i − bνi + αw2

i

wi

]

, (7)

andT(θi, νi) is the transformation matrix given by

T(θi, νi) :=
1

M1

[
cos θi −M1νi sin θi
sin θi M1νi cos θi

]

. (8)

For the invertibility ofT(θi, νi), we assume throughout the
paper that

Assumption 3:νi 6= 0 for all i ∈ N .



IV. D ESIGN OFINVERSE OPTIMAL DISTRIBUTED

FORMATION CONSENSUSPROTOCOL

In this section, we design the distributed formation consen-
sus protocolui in (6), which is inverse optimal with respect
to the cost function givena posteriori. DefineΓ(νi) � 02×2

for i ∈ N as

Γ(νi) := γ · diag{1/M2
1 , ν

2
i }, (9)

whereγ > 0 is a positive constant. We start our discussion
with the following two lemmas that dramatically simplify
the analysis, and are obvious by the definitions ofT(θi, νi)
andΓ(νi) given in (8) and (9), respectively.

Lemma 1:∀νi ∈ R \ {0}, Γ(νi) is positive definite.
Lemma 2:∀νi ∈ R \ {0} and∀θi ∈ R,

T(θi, νi)Γ
−1(νi)T

T (θi, νi) = γ−1 · I2.

Now, define the state variablexi ∈ R
4 for i-th robot as

xi :=

[
qi − di

vi

]

, (10)

where di ∈ R
2 is the distance vector of thei-th robot

describing the desired formation. Differentiating (10) and
substituting (6), we obtain the following dynamics:

ẋi = Axi +B(θi, νi)ui, (11)

whereA andB(θi, νi) are defined as

A :=

[
02×2 I2
02×2 02×2

]

,B(θi, νi) :=

[
02×2

T(θi, νi)

]

.

For the system (11) and a given digraphG = {N , E ,A},
we propose the following inverse optimal protocol for for-
mation consensus:

ui = −cK(θi, νi)
∑

j∈Ni

aij(xi − xj) (12)

wherec > 0 is a constant andK(θi, νi) is given by

K(θi, νi) := Γ−1(νi)B
T (θi, νi)P. (13)

P is the solution of the algebraic Riccati equation (ARE):

ATP+PA−
1

γ
PB0B

T
0 P+Q = 04×4 (14)

for B0 ∈ R
4×2 defined asB0 := [02×2 I2 ]

T , and a positive
definite matrixQ ∈ R

2×2. Here, the existence ofΓ−1(νi)
in (13) is guaranteed by Assumption 3 (see Lemma 1).

From (10), we can see that if the formation consensus
is reached under Assumption 3,i.e., if qi − qj ≡ dij

and 0 6= vi ≡ vj , ∀i, j ∈ N , wheredij := di − dj ,
then the group of mobile robots moves with the same
group velocity, and achieves the desired formation. For
notational convenience, we will use the global state vector
x := [ xT

1 xT
2 · · · xT

N ]T ∈ R
4N throughout the paper

including the following theorem that states stability and
inverse optimality of the protocol (12).

Theorem 1:Consider a digraphG = {N , E ,A} satisfying
Assumptions 1–2 and the group of mobile robots (11) with
the control (12) under Assumption 3. Define the symmetric
matrix ΦT = Φ ∈ R

4N×4N as

Φ := S⊗Q+
1

γ
(c · LTRL− S)⊗ (PB0B

T
0 P),

whereS andR are given in Proposition 1 withS = RL.
Assume that the positive constantc > 0 in (12) is sufficiently
large so that

c > λmax(S)/λ>0min(L
TRL). (15)

Then,

1) the formation consensus is reached under (12);
2) Φ is positive semi-definite;
3) the protocol (12) minimizes the performance index

J(x(0),u) =

∫ ∞

0

(

c ·xTΦx + γ ·µT
(
R⊗ I2

)
µ

)

dt,

(16)
whereµ ≡ [µT

1 µT
2 · · ·µT

N ]T ∈ R
2N is the global

nonlinear control input in whichµi ∈ R
2 (i ∈ N ) is

defined asµi := T(θi, νi)ui;
4) the optimal value functionV ∗(x(0)) := minu J(x0,u)

is given by

V ∗(x(0)) = c · xT (0)(S⊗P)x(0). (17)

Proof: From Lemma 2 and (13), we have

T(νi, θi)K(θi, νi) =
1

γ
BT

0 P,

B(νi, θi)K(θi, νi) =
1

γ
B0B

T
0 P.

So, by the definition ofui in (12) andµi = T(θi, νi)ui, we
have

µi = −
c

γ
·BT

0 P
∑

j∈Ni

aij(xi − xj), (18)

and the system (11) can be expressed in terms ofµi as

ẋi = Axi +B0µi. (19)

Following the similar procedure to [14, Theorem 2] with (18)
and (19), we can see that ifΨ given by

Ψ := c2(L⊗
1

γ
·B0P)T (R ⊗ γ I2)(L⊗

1

γ
·B0P)

− c(RL⊗ (ATP+PA)) (20)

is positive semi-definite, then the formation consensus is
reached under the protocolµi (or equivalently,ui in (12))
that minimizes the performance index

J (x0,u) =

∫ ∞

0

(

xTΨx+ γ · µT
(
R⊗ I2

)
µ

)

dt,

and the optimal value functionV ∗(x(0)) is given by (17).
Using the properties of Kronecker products and substituting



the ARE (14) andS = RL, we can prove the equivalence
“Ψ = cΦ” as shown below:

Ψ

c
= c

(

LTRL⊗
PBT

0 B0P

γ

)

− (RL⊗ (ATP+PA))

= c

[

LTRL⊗
PBT

0 B0P

γ

]

+

[

S⊗

(

Q−
PB0B

T
0 P

γ

)]

=
1

γ
(c · LTRL− S)⊗PB0B

T
0 P) + S⊗Q = Φ.

This implies the equivalence of the two performance indices
J (x0,u) and J(x0,u). So, it remains to show thatΦ (=
Ψ/c) is positive semi-definite under (15).

To complete the proof, we now prove

cSTR−1S− S � 0N×N (21)

under (15), which obviously impliesΦ � 0N×N (see the
definition ofΦ and notice thatSTR−1S = LTRL).

1) Proof of “ ker (S) = ker
(
STR−1S

)
” : Assumption 2

implies that the zero eigenvalue “0” of the graph Lapla-
cian matrixL is simple. From this andS = RL, we
have

rank (S) = N − 1. (22)

In addition, (22) andrank (R) = N imply

rank
(
STR−1S

)
= N − 1. (23)

Next, for a nonzero vectorz ∈ R
N , supposez ∈ ker (S)

so Sz = 0N holds. Then, we haveSTR−1Sz = 0N ,
and therebyker (S) ⊆ ker

(
STR−1S

)
. This yields

ker (S) = ker
(
STR−1S

)
since (22) and (23) imply

nullity (S) = nullity
(
STR−1S

)
= 1.

2) Proof of (21): SinceS andSTR−1S are positive semi-
definite, the zero eigenvalue is the minimum among the
eigenvalues of the matrices. Therefore, fory ∈ R

N

satisfyingSy 6= 0N , the inequality

c · yTSTR−1Sy ≥ c · λ>0min(S
TR−1S) · ‖y‖2

> λmax(S) · ‖y‖
2 ≥ yTSy > 0

holds by (15); from this andker (S) = ker
(
STR−1S

)
,

we conclude that (21) is satisfied whenever (15) holds.

If the digraphG is detailed balanced, then the performance
index (16) in Theorem 1 can be rewritten in a more tractable
form as shown in the next theorem.

Theorem 2:Suppose the digraphG is detailed balanced.
Then, under the same conditions of Theorem 1, (16) can be
expressed as

J(x(0),u) =

∫ ∞

0

(

c · xTΦx +

N∑

i=1

βiu
T
i Γ(θi, νi)ui

)

dt,

(24)
whereβi > 0 (i ∈ N ) is defined in Proposition 1 and satisfies
βiaij = βjaji for all i, j ∈ N .

Proof: Since the digraphG is detailed balanced, we
can chooseR in Theorem 1 asR = diag{β1, β2, · · · , βN}
by Proposition 1. This implies

R⊗ I2 = blockdiag{β1I2, β2I2, · · · , βNI2},

so the input-term “γ · µT
(
R ⊗ I2

)
µ” in (16) becomes

γ · µT
(
R⊗ I2

)
µ = γ ·

N∑

i=1

βiµ
T
i µi =

N∑

i=1

βiu
T
i Γ(θi, νi)ui,

where we have substituted the equalitiesµi = T(θi, νi)ui

and γTT (θi, νi)T(θi, νi) = Γ(θi, νi) (see Lemma 2). So,
we obtain (24) from (16), which completes the proof.

V. EXTENSION BY BACKSTEPPINGDESIGN

To determine the actual torque inputsτi,R andτi,L of each
mobile robot (1)–(2), we should derive each angular torque
control τi,w in (5) as well as the linear torque controlτi,v
already given in the previous section. In this section, we use
the backstepping technique with thewi-dynamics (5) and the
inverse optimal control scheme shown in Section IV to derive
eachτi,w . First, note that the dynamics (11) of a mobile robot
can be rewritten as

ẋi = Axi +B(θi, νi)
[
ui,d + ũi

]
, (25)

whereui,d is the target control input to the system (25) and
defined asui,d := [ τv,i − bνi+αw2

i , wi,d ]
T for the desired

angular velocitywi,d; ũi is defined bỹui := [ 0, w̃i ]
T with

the angular velocity error̃wi := wi − wi,d. We also denote
w̃ := [ w̃T

1 w̃T
2 · · · w̃T

N ]T ∈ R
N for notational convenience.

The objective of the backstepping design is to derive the
angular torque controlτi,w that driveswi to asymptotically
make the angular velocity error̃wi zero and achieve the
formation consensus when the target inputui,d is given by

ui,d = −cK(θi, νi)
∑

j∈Ni

aij(xi − xj), (26)

according to the inverse optimal protocol (12). Now, let
µd, µ̃ ∈ R

2N be defined asµd := [µT
1,d µT

2,d · · ·µ
T
N,d ]

T and
µ̃ := [ µ̃T

1 µ̃T
2 · · · µ̃T

N ]T with µi,d, µ̃i ∈ R
2 (i ∈ N ) given

byµi,d := T(θi, νi)ui,d andµ̃i := T(θi, νi)ũi, respectively.
Then, (25) and (26) can be rewritten as

ẋi = Axi +B0

[
µi,d + µ̃i

]
, (27)

µi,d = −
c

γ
·BT

0 P
∑

j∈Ni

aij(xi − xj) = −
c

γ

N∑

j=1

lij B
T
0 Pxi.

Combining the control inputsµi,d and the dynamic equations
(27) ∀i ∈ N , we obtain

µd = −
c

γ
· (L ⊗BT

0 P)x,

ẋ = (IN ⊗A)x + (IN ⊗B0)
[
µd + µ̃

]

≡ Āx+ (IN ⊗B0)µ̃, (28)

whereĀ := (IN ⊗A)− c (L⊗B0B
T
0 P)/γ. For the design

and analysis, we essentially need the following lemma, which



can be easily proven by considering the inverse optimality
given in Theorem 1 (see [14] for more discussions).

Lemma 3:Under the same conditions of Theorem 1, the
following global ARE holds:

ĀT (S⊗P) + (S⊗P)Ā

= −Φ−
c

γ
· (S⊗P)(IN ⊗B0)(IN ⊗B0)

T (S⊗P).

Theorem 3:Consider a group of mobile robots described
by (25) for eachi ∈ N and a digraphG = {N , E ,A}. Let
eachτw,i be given by

τw,i =
(
bR+

α

R
νi
)
wi +M2 ẇi,d − (k1,i + k2,iν

2
i )w̃i (29)

for somek1,i, k2,i > 0. Then, under the same conditions of
Theorem 1, the virtual and actual control inputs (26) and (29)
asymptotically stabilize the closed-loop system consisting
of all of the i-th subsystems (5) and (25) to the formation
consensus error spaceΩ defined as

Ω := {(x, w̃) ∈ R
4N+N : x ∈ ker (L) , wi = wi,d}.

Proof: ConsiderV ∗(x) = c ·xT (S⊗P)x given in (17).
Letting z := c(IN ⊗ B0)

T (S ⊗ P)x, differentiatingV ∗(x)
with respect to the system (28), and using Lemma 3, we
obtain

V̇ ∗(x) = c · xT

[

ĀT (S⊗P) + (S⊗P)Ā

]

x+ 2zT µ̃

=− c · xTΦx−
1

γ
· ‖z‖2 + 2zT µ̃.

Applying Young’s inequality2zT µ̃ ≤ γ−1 · ‖z‖2+ γ · ‖µ̃‖2,
using Lemma 2 with the substitution of̃µi = T(θi, νi)ũi,
and rearranging the result with̃ui = [ 0, w̃i ]

T and (9) yields

V̇ ∗(x) ≤ −cxTΦx+

N∑

i=1

ũT
i

(

γTT (θi, νi)T(θi, νi)

)

︸ ︷︷ ︸

=Γ(νi)by Lemma 2

ũi

= −cxTΦx+ γ ·
N∑

i=1

ν2i w̃
2
i . (30)

Now, considerV̄ (x, w̃) = V ∗(x)+ γ
2ε ·

∑N

i=1 M2w̃
2
i with

ε ∈ (0, 1] as a Lyapunov function candidate. Differentiating
V̄ (x, w̃) along the trajectory generated by the systems (5)
and (28) and substituting (30), we obtain

˙̄V (x, w̃) ≤ −cxTΦx+ γ ·
N∑

i=1

(

ν2i w̃
2
i +

M2

ε
· w̃i

˙̃wi

)

=− cxTΦx+ γ ·
N∑

i=1

w̃i ·

[

ν2i w̃i

+
1

ε
·

(

− bRwi −
α

R
νiwi + τw,i −M2ẇi,d

)]

(31)

Define κ1,i, κ2,i > 0 as κ1,i := k1,i/ε and κ2,i := k2,i/ε.
Then, substituting (29) into (31) yields

˙̄V (x, w̃) ≤ −cxTΦx− γ ·
N∑

i=1

(

κ1,i + (κ2,i − 1)ν2i

)

w̃2
i .

Therefore, ˙̄V is negative definite ifκ1,i > 0 andκ2,i ≥ 1,
which becomek1,i > 0 andk2,i ≥ ε > 0 by the definition
of κ1,i andκ2,i. Sinceε can be any value in(0, 1], the latter
condition impliesk2,i > 0, so the proof is completed by
Lyapunov’s theorem for partial stability [14].

VI. SIMULATION RESULTS

To verify the performance of the proposed protocol (26)
and (29) designed with the inverse optimal consensus and the
backstepping control methodologies, respectively, we carried
out a numerical simulation with the three mobile robots
(N = {1, 2, 3}) whose kinematic and dynamic models are
given by (1) and (2), respectively. In the simulation, the
parameters of the mobile robots are given byR = 0.75 [m],
d = 0.3 [m], r = 0.15 [m], mc = 30 [kg], mw = 1 [kg],
Ic = 15.625 [kg·m2], Iw = 0.005 [kg·m2], Im = 0.0025
[kg·m2], and b = 2 [m]; we considered a detailed balanced
graphG with its graph Laplacian matrixL given by

L =





0.5 −0.5 0.0
−0.4 0.6 −0.2
0.0 −2.0 2.0



 ,

which obviously satisfiesS = RL in Proposition 1 withR =
diag{1, 52 ,

1
4}, and gives the inverse optimality conditionc >

2.2978 by (15). From this, we choosec = 3. The matrixQ
and the positive constantγ in the ARE (14) are set toQ = I4
andγ = 1. The positive gainski,1 andki,2 in (29) are given
by ki,1 = ki,2 = 5 for all i ∈ {1, 2, 3}. Initial positionsp0

i =
(xi(0), yi(0), θi(0)), initial velocities ξ0i = (νi(0), wi(0)),
and the distance vectorsdi of the mobile robots are

p0
1 = (0, 0, π/6), ξ01 = (2, 0), d1 = [ 3.0, 0.0 ]T ,

p0
2 = (0, 1, 0), ξ02 = (1, 0), d2 = [ 0.0, 0.3 ]T ,

p0
3 = (1, 0,−π/6), ξ03 = (3, 0), d3 = [ 0.0, −0.3 ]T .

The simulation results are shown in Figs. 1 and 2, where
Fig. 1 describes the position trajectories of mobile robots
in xy-plane, and Fig. 2 illustrates the variations of mobile
robots’ linear and angular velocities(νi, wi). As shown in
Figs. 1 and 2(a), the mobile robots driven by the proposed
protocol (26) and (29) shape and maintain the desired
formation, and ultimately move with the same consensus
velocities and angle orientations. In case of the angular
velocity commandwi, it converges to zero as shown in
Fig. 2(b). This is because the desired angular velocitywi,d

becomes zero when the formation consensus is reached so
that x ∈ ker (L⊗ I4), and τi,w is designed to achieve
wi → wi,d as t → ∞; So, after the consensus is reached,
there is no change in the angle orientationθi of each mobile
robot (see Fig. 1).

VII. C ONCLUSIONS

In this paper, we presented a state transformation tech-
nique by extending the dynamic feedback linearization to
obtain a proper consensus model from the kinematics and
dynamics of a mobile robot. Then, using the properties of
the transformed model, inverse optimal consensus theory,
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Fig. 1. Position trajectories of mobile robots inxy-plane.

and backstepping, a nonlinear distributed protocol was de-
signed for formation consensus of multiple mobile robots.
By mathematical analysis, we provided the conditions for
Lyapunov’s cooperative stability and inverse optimality with
respect to a meaningful cost function,e.g., the required
consensus gain inequality (15), under the directed graph
communication topology with a simple graph Laplacian. The
numerical simulation results supports the effectiveness of the
proposed method.
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