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Abstract

Recent advances in various fields regarding decision making, especially regarding reinforcement learning (RL), have
revealed the interdisciplinary connections among their findings. For example, actor and critic in computational RL are
shown to play the same roles of dorsal and ventral striatum; goal-directed and habitual learning is strongly relevant to
model-based and model-free computational RL, respectively. Among the different methodologies in those fields, theoret-
ical approach in machine learning community has established the well-defined computational RL framework in discrete
domain and a dynamic programming method known as policy iteration (PI), both of which served as the fundamentals
in computational RL methods. The main focus of this work is to develop such RL framework and a series of PI methods
in continuous domain, with its environment modeled by an ordinary differential equation (ODE). Similar to the discrete
case, the PI methods are designed to recursively find the best decision-making strategy by iterating policy evaluation (as
a role of critic) and policy improvement (as a role of actor). Each proposed one is either model-free corresponding to ha-
bitual learning, or partially model-free (or partially model-based) corresponding to somewhere between goal-directed
(model-based) and habitual (model-free) learning. This work also provides theoretical background and perhaps, the
basic principles to RL algorithms with a real physical task which is usually modeled by ODEs. In detail, we propose on-
policy PI and then four off-policy PI methods—the two off-policy methods are the ideal PI forms of advantage updating
and Q-learning, and the other two are extensions of the existing off-policy PI methods; compared to PI in optimal control,
ours do not require an initial stabilizing policy. The mathematical properties of admissibility, monotone improvement,
and convergence are all rigorously proven; simulation examples are provided to support the theory.
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1 Introduction

Decision making problems have been studied in various disciplines such as machine learning, neuroscience, psychol-
ogy, and optimal control, with a number of different methodologies, e.g., simulation-based, theoretical, biological, and
empirical approaches. Recent advances in those fields regarding decision making, especially regarding reinforcement
learning (RL), have revealed the interdisciplinary connections among their findings. Closely related to this work is
that the actor-critic structure in computational RL presumably exists in a brain mechanism of dorsal (actor) and ventral
(critic) striatum, and that model-based and model-free computational RL are very relevant to goal-directed and habitual
learning in psychology, respectively [5].

Among the different approaches, the theoretical works in machine learning community have established the fundamental
mathematical model of the computational RL frameworks, with its environment represented by a finite Markov decision
process (MDP), and a dynamic programming method known as policy iteration (PI) with its mathematical properties.
Here, PI recursively finds the best decision-making strategy, called the optimal policy, with policy evaluation as a role of
critic and policy improvement as a role of actor [5]. Together with the other dynamic programming methods, PI has served
as a fundamental principle to develop computational RL methods in the MDP framework.

On the other hand, different from the MDP environment, the dynamics of real physical world is usually modeled by
ordinary differential equations (ODEs) in continuous time and space (CTS). In such continuous domain, a similar PI
method has also recently come to be studied in optimal control fields [4]. An interesting point of such a PI method is that
it is partially model-free, lying somewhere on the line between goal-directed (model-based) and habitual (model-free)
learning in psychology. This is a quite different situation from the MDP case, where PI is completely model-based, but
the actor-critic methods developed so far are all model-free and thus thought to be relevant only to habitual behavior [5].
There are also off-policy versions of PI in CTS, each of which is either completely or partially model-free [3]. However, it
is not theoretically straightforward to extend such PI methods in CTS from optimal control to the general RL framework.

In this work, we precisely define the RL framework in CTS, with its environment represented by an ODE, and then
propose a series of PI methods in that framework—one is the extension of integral PI [3, 4], and the other four are its
off-policy versions (two are the ideal PI forms of advantage updating [1, 2] and Q-learning in CTS, and the other two
correspond to the off-policy PI methods in [3]). Similar to PI in the MDP environment, their mathematical properties of
admissibility, monotone improvement, and convergence to the optimal solution are all rigorously proven. As opposed
to the PI methods in optimal control, all of the proposed PI schemes do not require an initial stabilizing policy, by virtue
of discounting, while each one still remains to be either completely or partially model-free. Simulation examples are also
provided to support the theory. Though our PI methods are not online incremental RL algorithms, we believe that this
work provides the theoretical background of and intuition to the RL methods in CTS, e.g., those in [1, 2]. This theoretical
work, lying between the fields of machine learning and optimal control, would also provide some motivational links
in the future between the RL methods and the findings in neuroscience and psychology in CTS, perhaps similar to the
interdisciplinary links between them in discrete time and space. For brevity, all of the Theorem proofs are omitted.

2 RL Problem Formulation in CTS

In the RL problem, X .
= Rn denotes the state space, and the action space U ⊆ Rm is a m-dimensional manifold in Rm

with (or without) boundary; t ≥ 0 denotes a given specific time instant; the environment in CTS is described by an ODE
Ẋτ = f(Xτ , Uτ ), where τ ∈ [t,∞) is the time variable, f : X ×U → X is a continuous function, Xτ ∈ X is the state vector
at time τ with its time-derivative Ẋτ ∈ X , and the action trajectory Uτ ∈ U is a right continuous function over [t,∞). A
continuous function π : X → U is called a (stationary) policy whenever the state trajectory Eπ[Xτ |Xt = x] is uniquely
defined for all τ ≥ t and all x ∈ X , where Eπ[Z|Xt = x] has no stochastic role but means the deterministic value Z when
Xt = x and Uτ = π(Xτ ) for all τ ≥ t. We will denote ∆t > 0 the time difference, t′ .

= t + ∆t, and X ′
t
.
= Xt′ . The RL

problem we consider is to find the optimal policy π∗ that maximizes the value function (VF) vπ : X → R ∪ {−∞}

vπ(x)
.
= Eπ[Gt|Xt = x] with a discounted return Gt

.
=

∫ ∞

t

γτ−tRτ dτ (upper bounded), (1)

where Rτ
.
= R(Xτ , Uτ ) ∈ R is the immediate reward at time τ and γ ∈ (0, 1) is the discount factor. The reward function

R : X × U → R here is continuous and upper-bounded. A policy π (or its VF vπ) is said to be admissible, denoted by
π ∈ Πa or vπ ∈ Va, if vπ(x) is finite for all x ∈ X , where Πa and Va denote the set of all admissible policies and VFs,
respectively. Note that if R is bounded, then every possible policy π is guaranteed to be admissible and has a bounded
value function. In our RL problem, we assume that every vπ ∈ Va has its continuous gradient ∇vπ and that there is an
optimal admissible policy π∗ such that vπ(x) ≤ v∗(x) for any x ∈ X and any policy π, where v∗ is the optimal VF.
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3 Partially Model-Free Policy Iteration

Note that in our CTS case, any vπ ∈ Va satisfies

∀x ∈ X and ∀∆t > 0 :

the Bellman equation: vπ(x) = Eπ

[
Rt + γ∆t vπ(X

′
t)
∣∣∣Xt = x

]
withRt

.
=

∫ t′

t
γτ−t Rτ dτ ;

the boundary condition: limk→∞ γk∆t Eπ[vπ(Xt+k∆t)|Xt = x] = 0.

The policy improvement operation in CTS is defined in the limit ∆t→ 0 as

π′(x) ∈ argmax
Ut∈U

lim
∆t→0

1

∆t
· E

[
Rt + γ∆t vπ(X

′
t)− vπ(Xt)

∣∣∣Xt = x
]

= argmax
u∈U

(
R(x, u) + v̇π(x, u) + ln γ · vπ(x)

)
∀x ∈ X , (2)

where π′ is the improved policy, and v̇π(x, u) = ∇vπ(x)f(x, u) by chain rule.

Algorithm 1: Partially Model-Free Policy Iteration
Initialize: i← 0, ∆t > 0, and π0 ∈ Πa;
repeat

Policy Evaluation: find vi : X → R such that ∀x ∈ X :

vi(x) = Eπi

[
Rt + γ∆t vi(X

′
t)
∣∣∣Xt = x

]
;

Policy Improvement: find a policy πi+1 such that

πi+1(x) ∈ argmax
u∈U

(
R(x, u)+∇vi(x)fc(x, u)

)
∀x ∈ X ;

i← i+ 1;
until convergence is met.

Considering any decomposition: f(x, u) = fd(x)+ fc(x, u),
where fd is an unknown drift dynamics and fc is a known
input coupling dynamcs, and noting that any addition or
subtraction of u-independent terms does not change the
maximization process with respect to u ∈ U , one can express
(2) in terms of fc as

π′(x)
.
= argmax

u∈U

(
R(x, u) +∇vπ(x)fc(x, u)

)
(3)

which we call partially model-free policy improvement.
Algorithm 1 is our partially model-free PI which finds the
optimal solution without knowing the drift dynamics fd. It
starts with an initial admissible policy π0; in each i-th step,
it finds a function vi satisfying the Bellman equation (pol-
icy evaluation), and then using vi and fc, the next policy
πi+1 is updated by “(3) with π′ = πi+1 and vπ = vi” (policy
improvement). This process is recursively done until convergence. Our main theorem is as follows.
Assumption 1. (Policy improvement condition) for each π ∈ Πa, there is a policy π′ such that (3) holds.

Assumption 2. (Boundary condition) ∀i ∈ Z+: if πi is admissible, then limk→∞ γk∆t Eπi [vi(Xt+k∆t)|Xt = x] = 0 ∀x ∈ X .
Assumption 3. (Uniqueness of optimality) there is one and only one element w∗ ∈ Va over Va that satisfies

the Hamilton-Jacobi-Bellman equation: 0 = max
u∈U

(
R(x, u) + ẇ∗(x, u) + ln γ · w∗(x)

)
∀x ∈ X (in fact, w∗ = v∗).

Theorem 1. The sequences {πi}∞i=0 and {vi}∞i=0 generated by Algorithm 1 under Assumptions 1–3 satisfy the followings.

(P1) πi+1 ∈ Πa and vi = vπi
∈ Va for all i ∈ N ∪ {0};

(P2) the policy is monotonically improved, i.e., vπ0
(x) ≤ vπ1

(x) ≤ · · · ≤ vπi
(x) ≤ vπi+1

(x) ≤ · · · ≤ v∗(x) for all x ∈ X ;
(P3) vi → v∗ with respect to some metric d : Va × Va → [0,∞), i.e., limi→∞ d(vi, v∗) = 0;
(P4) vi → v∗ pointwisely on X and uniformly on any compact subset of X if:

(a) the limit function v̂∗
.
= limi→∞ vi belongs to Va;

(b) for every compact subset Ω ⊂ X , the policy iteration mapping vπ 7→ vπ′ is continuous with respect to

the uniform pseudometric dΩ(v, w)
.
= supx∈Ω

∣∣v(x)− w(x)
∣∣ (v, w ∈ Va).

4 Extensions to Off-Policy Policy Iteration
PI shown in Algorithm 1 can be extended to a series of its off-policy versions that use the behavior policy µ than the
target policy πi to generate the state trajectory Xτ (and the reward Rτ ). To describe µ, we extend the concept of a policy
established in Section 2. A function µ : [t,∞) × X → U is called a (non-stationary) policy if: 1) µ(τ, ·) is continuous for
each fixed τ ≥ t and µ(·, x) is right continuous for each fixed x ∈ X ; 2) for each x ∈ X , the state trajectory Ex

µ[Xτ ] is
uniquely defined for all τ ≥ t. Here, Ex

µ[Z] means the deterministic value Z when Xt = x and Uτ = µ(τ,Xτ ) ∀τ ≥ t. A
function µ : [t,∞)× X × U0 → U is said to be an AD policy over U0 ⊆ U if for each fixed u ∈ U0, µ(·, ·, u) is a policy and
µ(t, x, u) = u holds for all x ∈ X and all u ∈ U0. For an AD policy µ, we denote Ex

µ(·,·,u)[Z] by E(x,u)
µ [Z].
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By replacing policy evaluation and improvement, we propose four different off-policy PI methods—Advantage PI (API),
QPI, Explorized PI (EPI), and Common PI (CPI). In policy evaluation of API, the advantage function aπ defined as
aπ(x, u)

.
= R(x, u) + v̇π(x) + ln γ · vπ(x) [1, 2] is estimated, along with vπ and the constraint aπ(x, π(x)) = 0. In QPI, the

Q-function qπ so-defined in CTS as qπ(x, u) = κ · vπ(x) + aπ(x, u) for some κ ̸= 0 is estimated in policy evaluation with
the discounting β

.
= γ · eκ > 0 that should be different from γ ∈ (0, 1). Here, β determines κ in qπ , and the extremely

large |κ|may result in a significant performance degradation or extremely slow Q-learning [1]. Both aπ in API and qπ in
QPI replace the policy improvement (3) with the respective model-free ones. EPI is the direct extension of PI with respect
to the behavior policy µ without introducing any other function than vπ . CPI is the model-free modification of EPI when

(C1) fc(x, u) = Fc(x)u for a continuous function Fc : X → Rn×m (input-affine dynamics);
(C2) U is convex and the reward R is given by R(x, u) = R0(x) − S(u) for a continuous upper-bounded function R0

and a strictly convex function S, with its gradient ∇S : U → R1×m that is continuous and has its inverse ∇S−1

on the interior of the action space domain U .

The key idea of CPI is to estimate the C-function cπ(x)
.
= FT

c (x)∇vTπ (x) in policy evaluation and then use it in policy
improvement under (C1) and (C2) above. Here, note that the maximization (3) (and thus policy improvement of PI, EPI,
and CPI) can be dramatically simplified under (C1) and (C2) as π′(x) = σ(FT

c (x)∇vTπ (x)) = σ(cπ(x)) with σT .
= ∇S−1.

The policy evaluation and improvement of the off-policy methods are summarized in Table 1, where we used the compact
notations Rπi

.
= R(·, πi(·)), aπi

i
.
= ai(·, πi(·)), qπi

i
.
= qi(·, πi(·)), fπi

c
.
= fc(·, πi(·)), ξπi

τ
.
= Uτ − πi(Xτ ), and

Iα(Z)
.
=

∫ t′

t
ατ−tZ(Xτ , Uτ ) dτ and Dα(v)

.
= v(Xt)− α∆tv(X ′

t)

for brevity. For example, the policy evaluation of Algorithm 1 can be expressed as Ex
πi
[Dγ(vi)] = Ex

πi
[Iγ(R)]. As shown

in Table 1, API, QPI, and CPI are model-free while EPI requires the full-knowledge of an input-coupling dynamics fc to
run. On the other hand, while API and QPI explore the whole state-action space X ×U to learn their respective functions
(vπ, aπ) and qπ for all (x, u) ∈ X × U , EPI and CPI search only the significantly smaller spaces X and X × {uj}mj=0,
respectively. This is because EPI and CPI both learn no AD function like aπ and qπ (see the last column of Table 1). In CPI,
u0, u1, · · · , um ∈ U in the search space X × {uj}mj=0 are any vectors in U such that span{uj − uj−1}mj=1 = Rm. Denote
vi

.
= qi(·, πi(·))/κ in the QPI case. Then, all of the four off-policy PI satisfy the following theorem.

Theorem 2. The sequences {πi}∞i=0 and {vi}∞i=0 generated by any of the four off-policy PI under Assumptions 1, 2, and 3 satisfy
(P1)–(P4) in Theorem 1. Moreover, for all i ∈ N ∪ {0}: ai = aπi

(API), qi = qπi
(QPI), and ci = cπi

(CPI).

Table 1: Details about the (Partially) Model-Free Off-policy PI methods (API, QPI, EPI, and CPI)

Name Policy Evaluation Policy Improvement Constraint(s) Search
Space

Fnc(s) to be
Estimated

API E(x,u)
µ

[
Dγ(vi)

]
= E(x,u)

µ

[
Iγ

(
R− ai + aπi

i

)]
πi+1(x) ∈ argmaxu∈U ai(x, u) aπi

i (x) = 0 X × U vπ and aπ

QPI E(x,u)
µ

[
Dβ

(
qπi
i

)]
= κ · E(x,u)

µ

[
Iβ (R− qi)

]
πi+1(x) ∈ argmaxu∈U qi(x, u) (none) X × U qπ

EPI Ex
µ

[
Dγ(vi)

]
= Ex

µ

[
Iγ

(
Rπi −∇vi (fc − fπi

c )
)]

exactly same as that in Alg. 1 (none) X vπ

CPI E(x,u)
µ

[
Dγ

(
vi
)]

= E(x,u)
µ

[
Iγ

(
Rπi − ci ξ

πi
·
)]

πi+1(x) = σ(ci(x)) (C1) & (C2) X ×{uj} vπ and cπ

5 Simulation Examples: Applications to a Swing-up Pendulum Task

We simulated the proposed PI methods with the 2nd-order inverted-pendulum model (n = 2 and m = 1): θ̇τ = wτ and
Jẇτ = −ϱwτ +mgl sin θτ +Uτ , where θτ and wτ are state variables representing the angular position and velocity of the
pendulum at time τ ≥ 0, and Uτ is the external torque input to the pendulum at time τ limited as |Uτ | ≤ Umax for Umax = 5
[N·m]. The physical parameters were set to ϱ = 0.01, m = l = 1, g = 9.81, and J = ml2 = 1. The state and action spaces
in this example are X = R2 and U = [−Umax, Umax]; the state vector is Xτ

.
= [ θτ wτ ]

T ∈ X ; f in the dynamics is given by
f(x, u) = fd(x) + Fc(x)u with fd(x) = [x2 (mgl sinx1 − ϱx2)/J ]

T and Fc(x) = [ 0 1/J ]T and thus satisfies (C1), where
x = [x1 x2 ]

T ∈ X . Note that this inverted pendulum setting is exactly same to that in [2]; since the maximum torque
Umax is smaller than mgl, the policy has to swing the pendulum several times to reach the upright position.

Our learning objective in the simulation is to make the pendulum swing up and eventually settle down at the upright
position θfinal = 2πk for some integer k. The reward R to achieve such a goal under the torque limit |Uτ | ≤ Umax was set to
R(x, u) = R0(x)−S(u) with R0(x) = 102 cosx1 and S(u) = limv→u

∫ v

0
σ−1(ξ) dξ, where σ(ξ) = Umax tanh(ξ/Umax) is a sig-

moid function that saturates at±Umax. Notice that our setting satisfies (C1) and (C2) both of which are necessary to simu-
late CPI with its simple policy improvement πi+1(x) = σ(ci(x)); both also simplify the policy improvement of PI and EPI
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(a) v̂10(x) (EPI) (b) v̂10(x) (CPI) (c) v̂10(x) (API) (d) q̂10(x, π̂10(x))/κ (QPI)

Figure 1: The estimates of vi|i=10 (≈ v∗) done by the off-policy PI methods over the region Ωx; the horizontal and vertical
axes correspond to the values of the angular position x1 and the velocity x2 of the pendulum; v̂i, q̂i, and π̂i denote the
estimates of vi, qi, and πi obtained by running each method. Note that vi = qi(·, πi(·))/κ in QPI.

as πi+1(x) = σ(FT
c (x)∇vTi (x)), but not of API and QPI at all. By integration by parts and tanh−1(u/Umax) =

1
2 ln(u+/u−),

where u±
.
= 1± u/Umax, the action penalty S(u) is explicitly expressed as S(u) = (U2

max/2) · ln
(
u
u+

+ · u
u−
−

)
which is finite

over U and has its minimum (= 0) at u = 0 and its maximum (≈ 17.3287) at u = ±Umax. This establishes the boundedness
of the reward R over X × U and thereby, admissibility and boundedness of vπ for any policy π (see Section 2).
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(a) Eπ̂10 [θτ |X0 = x0], the trj. of the angular position θτ
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(b) Eπ̂10 [wτ |X0 = x0], the trj. of the angular velocity wτ

Figure 2: State trjs. under x0 = [ 1.1π 0 ]T and π̂10.

The initial policy π0 and the parameters in all of the methods were
set to π0 = 0, γ = 0.1, ∆t = 10 [ms], and in QPI, β = 1. The be-
havior policy µ used in the off-policy simulations was µ = 0 (EPI)
and µ(t, x, u) = u (API, QPI, and CPI). In API and QPI, the next tar-
get policy πi+1 is given by πi+1(x) ≈ σ(yi(x)), where yi(x) is the
output of a radial basis function network (RBFN) to be trained by
policy improvement using ai and qi, respectively. The functions vi,
ai, qi, and ci were all approximated by RBFNs as well. Instead of
the whole spaces X and X ×U , we considered their compact regions
Ωx

.
= [−π, π]× [−6, 6] and Ωx × U ; since our inverted-pendulum sys-

tem and the VF are 2π-periodic in the angular position x1, the state
value x ∈ X was normalized to x̄ ∈ [−π, π] × R whenever input to
the RBFNs. Further details about the RBFNs and the implementation
methods are all omitted for brevity; the result of PI (Algorithm 1) is
also omitted since it is almost exactly same to that of EPI.

Fig. 1 shows the estimated values of vπi
over Ωx at i = 10. Here,

vπi
can be considered to be approximately equal to the optimal one

v∗ after convergence. As shown in Fig. 1, the landscapes of the final
VF estimates generated by different PI methods are all consistent and
approximately equal to each other. The same goes for the state trajec-
tories in Fig. 2 generated under the estimated policy π̂i of πi finally
obtained at i = 10 by each off-policy method. They also all achieved
the learning objective with θfinal = 2π at around t = 3 [s]. Note that in
our case, the initial policy π0 = 0 was not asymptotically stabilizing
while it should be in the PI methods under the optimal control setting
(without discounting) to achieve such learning objective [3, 4].
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