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This note summarizes some of the basis theory on σ-algebra and measurable functions, which have

served as the fundamentals of measure theory, Lebesque integration, probability, etc. The materials either

directly come from or strongly related to those in Chapters 1.2, 2.1, and 2.4 in Folland’s real analysis

book. Related to them, this note also introduces some basic theory of topology and set theory that also

make the statements about σ-algebra and measurable functions clear and rigorously true.

I. PRELIMINARIES

In this note,


X and Y denote any non-empty sets;

f : X → Y is any mapping from X to Y ;

M⊆ P(X) and N ⊆ P(Y ) denote any (or some given) σ-algebras on X and Y , respectively.

(X,M) (and (Y,N )) is called a measurable space. Here, a σ-algebraM on X (or N on Y ) is precisely

defined as follows.

Definition 1. A non-empty subset M⊆ P(X) is said to be a σ-algebra on X iif:

1) {Ej}j∈N ⊆M =⇒
⋃
j∈N

Ej ∈M (closed under countable unions),

2) E ∈M =⇒ Ec ∈M (closed under complements).

If the first property is replaced by

1′) {Ej}Nj=0 ⊆M =⇒
N⋃
j=1

Ej ∈M (closed under finite unions),

then, M is said to be an algebra on X .

Note that any σ-algebra on X is an algebra on X , but not vice versa. The basic properties of a σ-algebra

are as follows.

Proposition 1. The followings hold for any σ-algebra M on X and

1) φ, X ∈M,

2) {Ej}j∈N ⊆M =⇒
⋂
j∈NEj ∈M (closed under countable intersections).

3) E, F ∈M =⇒ E \ F ∈M and E4F ∈M.
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Proof. The second part can be directly proven as follows:⋂
j∈N

Ej =
( ⋃
j∈N

Ecj

)c
∈M.

Then, the first part is obvious since for E ∈ M, we have X = E ∪ Ec ∈ M and φ = E ∩ Ec ∈ M.

Likewise, sinceM is closed under countable unions, countable intersections, and complements, we finally

have E \ F = E ∩ F c ∈M and E4F = (E \ F ) ∪ (F \ E) ∈M.

Example 1. M = P(X) and M = {X,φ} are the largest and smallest σ-algebra on X , respectively.

The following shows that the (uncountable) intersection of σ-algebras is also a σ-algebra.

Proposition 2. Let {Mα}α∈A be a family of σ-algebras on X . Then, M =
⋂
α∈AMα is a σ-algebra.

Proof. (Closed under complements) Assume E ∈ M. Then, by definition, E ∈ Mα for all α ∈ A,

which again implies Ec ∈Mα for all α ∈ A. Hence, we obtain Ec ∈
⋂
α∈AMα =M.

(Closed under countable unions) Assume {Ej}j∈N ⊆ M. Then, Ej ∈ M implies that Ej ∈ Mα

for all α ∈ A. Since Mα is a σ-algebra, we obtain
⋃
j∈NEj ∈ Mα for all α ∈ A, implying that⋃

j∈NEj ∈M.

Definition 2. For any family E ⊆ P(X), σ(E) denotes the smallest σ-algebra on X that contains E; we

call σ{E} the σ-algebra generated by E .

Remark 1. Note that for any family E ⊆ P(X), there is at least one σ-algebra, namely, the power set

P(X) itself, the largest σ-algebra, that contains E . Moreover, since any (uncountable) intersection of

σ-algebras is also a σ-algebra as shown in Proposition 2, the smallest σ-algebra σ(E) in Definition 2

can be constructed and recognized as the intersection of all σ-algebras containing E .

By Proposition 2, the following lemma is obvious.

Lemma 1. If E ⊆M, then σ(E) ⊆M.

In the following, we show that the family of finite disjoint union of an elementary family forms an

algebra. As discussed later, a σ-algebra and an algebra are the domains of a measure and a premeasure,

respectively.

Definition 3. A non-empty family E ⊆ P(X) is said to be an elementary family of X iif

1) φ ∈ E;

2) if E, F ∈ E , then E ∩ F ∈ E;

3) if E ∈ E , then Ec is a finite disjoint union of members of E .
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Note that by the third property, X is a finite disjoint union of members of an elementary family of X .

Proposition 3. If E is an elementary family of X , then the family A of all finite disjoint unions of

members of E is an algebra on X .

Proof. Let A1, · · · , An ∈ E and Acn =
⋃m
k=1Bk for some disjoint Bk ∈ E . Then, for j ∈ {1, 2, · · · , n},

Aj \An = Aj ∩Acn =

m⋃
k=1

(Aj ∩Bk) ∈ A (∵ Aj ∩Bk ∈ E and {Aj ∩Bk}mk=1 is disjoint.).

This implies
⋃n
j=1Aj = An ∪

(⋃n−1
j=1 (Aj \An)

)
∈ A. To show that A is closed under complements, let

Acj =
⋃mj

k=1Bj,k for j ∈ {1, 2, · · · , n}, where Bj,1, Bj,2, · · · , Bj,mj
are disjoint members of E . Then,( n⋃

j=1

Aj

)c
=

n⋂
j=1

( mj⋃
k=1

Bj,k

)
=
⋃{

B1,k1 ∩ · · · ∩Bn,kn︸ ︷︷ ︸
∈E

: 1 ≤ kj ≤ mj , 1 ≤ j ≤ n
}
∈ A

by the set operations over a finite number of sets, which completes the proof.

II. ABSTRACT MEASURABLE FUNCTIONS

Lemma 2. The inverse mapping f−1 : P(Y ) → P(X) defined by f−1(E)
.
= {x ∈ X : f(x) ∈ E}

preserves the unions, intersections, and complements. That is, for any indexed family {Eα}α∈A ⊆ P(Y )

and any E ∈ P(Y ),

1) f−1
( ⋃
α∈A

Eα

)
=
⋃
α∈A

f−1(Eα),

2) f−1
( ⋂
α∈A

Eα

)
=
⋂
α∈A

f−1(Eα),

3) f−1(Ec) = (f−1(E))c.

Proposition 4. Any M⊆ P(X) given by M = {f−1(E) : E ∈ N} is a σ-algebra on X .

Proof. Let {Ej}j∈N ⊆ N and E ∈ N . Then,
⋃
j∈NEj ∈ N and Ec ∈ N since N is a σ-algebra. Hence,

by Lemma 2, ⋃
j∈N

f−1(Ej) = f−1
( ⋃
j∈N

Ej

)
∈M,

(f−1(E))c = f−1(Ec) ∈M.
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Definition 4. A function f : X → Y is said to be (M,N )-measurable, or just measurable whenM and

N are understood, iif:

E ∈ N =⇒ f−1(E) ∈M.

Proposition 5. A function f : X → Y is always (M,N )-measurable for M given in Proposition 4,

Proof. Trivial by Definition 4.

The (M,N )-measurability can be understood in a sense that the restricted function f−1|N : N → M

on the σ-algebra domain N ⊆ P(Y ) is well-defined in such a way that its image is contained by its

codomain M as in the usual definition of a function. This observation can be summarized as follows.

Proposition 6. f : X → Y is (M,N )-measurable iif Im(f−1|N ) ⊆M.

Corollary 1. If M and N are respective σ-algebras on X and Y such that M⊆M and N ⊆ N , then

f is (M,N )-measurable =⇒ f is (M,N )-measurable.

Proof. Trivial by Proposition 6 and Im(f−1|N ) ⊆ Im(f−1|N ) ⊆M ⊆M.

Corollary 2. For any σ-algebra N on Y , any function f : X → Y is (P(X),N )-measurable.

Proof. Trivial by Im(f−1|N ) ⊆ P(X), where P(X) is the largest σ-algebra on X (see Example 1).

The following is the dual to Propositions 4 and 5.

Lemma 3. Any N ⊆ P(Y ) given by N = {E : f−1(E) ∈ M} is a σ-algebra on Y ; for such N , f is

always (M,N )-measurable.

Proof. Let {Ej}j∈N ⊆ N and E ∈ N . Then, we have {f−1(Ej)}j∈N ⊆ M and f−1(E) ∈ M. Since

M is a σ-algebra, we therefore obtain by Lemma 2

f−1
( ⋃
j∈N

Ej

)
=
⋃
j∈N

f−1(Ej) ∈M,

f−1(Ec) = (f−1(E))c ∈M,

meaning that
⋃
j∈NEj ∈ N and Ec ∈ N . Therefore, N is a σ-algebra on Y . Moreover, the definition

of N gives Im(f−1|N ) ⊆M, and hence f is (M,N )-measurable by Proposition 6.

Proposition 7. For any subset E ⊆ Y , f is (M, σ(E))-measurable iif Im(f−1|E) ⊆M, i.e., iif

f−1(E) ∈M for all E ∈ E .
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Proof.

(=⇒) If f is (M, σ(E))-measurable, then E ⊆ σ(E) and Proposition 6 imply that

Im(f−1|E) ⊆ Im(f−1|σ(E)) ⊆M.

(⇐=) The assumption assures the expression E = {E ∈ E : f−1(E) ∈M}. Moreover, the σ-algebra N

given in Lemma 3 obviously satisfies E = {E ∈ E : f−1(E) ∈M} ⊆ {E ∈ P(Y ) : f−1(E) ∈M} = N

and hence, σ(E) ⊆ N by Lemma 1. This obviously results in Im(f−1|σ(E)) ⊆ Im(f−1|N ) ⊆ M, and

hence f is (M, σ(E))-measurable by Proposition 6.

Proposition 8. Suppose f : X → Y is (M,N )-measurable and g : Y → Z is (N ,O)-measurable. Then,

the composition g ◦ f : X → Z is (M,O)-measurable.

Proof. By measurability, f−1(E) ∈ M for all E ∈ N and g−1(F ) ∈ N for all F ∈ O. Hence, it is

obvious that f−1(g−1(F )) ∈M for all F ∈ O, and the proof is completed by (g ◦ f)−1 = f−1 ◦ g−1 =

f−1(g−1(·)).

III. PRODUCT σ-ALGEBRA AND MEASURABLE FUNCTIONS ON A CARTESIAN PRODUCT

Let {Yα}α∈A be a family of non-empty sets Yα indexed by α ∈ A.

Definition 5. The Cartesian product
∏
α∈A Yα is the set of all functions y : A →

⋃
α∈AXα such that

y(α) ∈ Yα for every α ∈ A. We denote yα
.
= y(α) and call it the α-th element of y.

If the sets Yα are all equal to some fixed set Z, then we denote
∏
α∈A Yα by ZA. Moreover, if

A is finite and given by A = {1, 2, 3, · · · , n} for some n ∈ N, (1)

then
∏
α∈A Yα and ZA will be denoted by Y1 × Y2 × · · · × Yn and Zn, respectively. For notational

convenience, we also denote Y .
=
∏
α∈A Yα throughout this section.

Definition 6. The α-th projection map pα : Y → Yα is such that pα(y) = yα for all y ∈ Y .

Remark 2. When (1) is true for the indexed set A, the Cartesian product Y = Y1 × Y2 × · · · × Yn
is usually defined as the set of all tuples (y1, y2, · · · , yn) such that yα ∈ Yα for α = 1, 2, · · · , n. This

definition is set-theoretically different from the Cartesian product defined above in Definition 5. However,

both definitions with the notation yα
.
= y(α) above agree that

yα ∈ Yα for any α ∈ A and thus pα(y) = yα for any α ∈ A and all y ∈ Y . (2)

Likewise, all of the theorems and proofs will be also true for the finite case (1).
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Now, let for each α ∈ A:

Nα ⊆ P(Yα) be a σ-algebra on Yα;

fα : X → Yα be a function from X to Yα indexed by α ∈ A.

The σ-algebra M(f·) ⊆ P(X) given by M(f·) = σ
({
f−1α (E) : E ∈ Nα and α ∈ A

})
is called the

σ-algebra (on X) generated by {fα}α∈A. A product σ-algebra on Y is the σ-algebra M(p·) generated

by {pα}α∈A when X = Y . We denote this σ-algebra M(p·) by
⊗

α∈ANα.

Proposition 9. fα is (M(f·),Nα)-measurable for each α ∈ A.

Proof. Let Mα
.
= σ({f−1α (E) : E ∈ Na}). Then, Propositions 4 and 5 imply that Mα is a σ-algebra

and fα is (Mα,Nα)-measurable. Since Mα ⊆M(f·), the proof is completed by Corollary 1.

Corollary 3. pα is (
⊗

α∈ANα,Nα)-measurable for each α ∈ A.

Remark 3. Note that
⋂
α∈AMα is also a σ-algebra (on X) by Proposition 2, and

⋂
α∈AMα ⊆M(f·)

holds by Mα ⊆M(f·), where Mα
.
= σ({f−1α (E) : E ∈ Na}). However,

⋂
α∈AMα =M(f·) does not

hold in general, and fα is not necessarily (
⋂
α∈AMα,Nα)-measurable.

Proposition 10. Suppose Eα ⊆ P(Yα) and Nα = σ(Eα) for each α ∈ A. Then,⊗
α∈A
Nα = σ

({
p−1α (E) : E ∈ Eα and α ∈ A

})
. (3)

Moreover, if Yα ∈ Eα for each α ∈ A, then
⊗

α∈ANα ⊆ σ
({∏

α∈AEα : Eα ∈ Eα
})

. In addition to

that, if A is countable, then
⊗

α∈ANα = σ
({∏

α∈AEα : Eα ∈ Eα
})
.

Proof. Let F .
=
{
p−1α (E) : E ∈ Eα and α ∈ A

}
⊆ P(Y ). Then, obviously, F ⊆

⊗
α∈ANα, and thus

we obtain σ(F) ⊆
⊗

α∈ANα by Lemma 1. On the other hand, Lemma 3 implies that for each α ∈ A,

{E : p−1α (E) ∈ σ(F)} ⊆ P(Yα) is a σ-algebra on Yα that obviously contains Eα and thus Nα (∵ it

is a σ-algebra; see also the definition of F and Nα = σ(Eα)). In other words, for each α ∈ A, we

have p−1α (E) ∈ σ(F) whenever E ∈ Nα, meaning that
⊗

α∈ANα ⊆ σ(F) by Lemma 1. Therefore,⊗
α∈ANα = σ(F).

Next, let G .
=
{∏

α∈AEα : Eα ∈ Eα
}

and E ∈ Eα. Then, since p−1α (E) =
∏
β∈AEβ where Eβ =

Yβ ∈ Eβ for β 6= α and Eα = E ∈ Eα, we have
{
p−1α (E) : E ∈ Eα and α ∈ A

}
⊆ G ⊆ σ(G) and thus⊗

α∈ANα ⊆ σ(G) by (3) and Lemma 1. On the other hand, let Eα ∈ Eα for each α ∈ A and suppose A

is countable. Then, since any σ-algebra is closed under finite intersections (see Proposition 1), we have

by (3) that
⋂
α∈A p

−1
α (Eα) ∈

⊗
α∈ANα, where

⋂
α∈A p

−1
α (Eα) =

∏
α∈AEα holds and thus{ ∏

α∈A
Eα : Eα ∈ Eα

}
⊆
⊗
α∈A
Nα.

Finally, by Lemma 1, σ(G) ⊆
⊗

α∈ANα and therefore σ(G) =
⊗

α∈ANα when A is countable.
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By letting Eα = Nα for all α ∈ A in Proposition 10, we obtain the following corollary.

Corollary 4.
⊗

α∈ANα ⊆ σ
({∏

α∈AEα : Eα ∈ Nα
})

. Moreover, if A is countable, then⊗
α∈A
Nα = σ

({ ∏
α∈A

Eα : Eα ∈ Nα
})

.

Proof. For the completeness, we provide the independent proof, which is almost same to the second

paragraph of the proof of Proposition 10. Let N .
= σ

({∏
α∈AEα : Eα ∈ Nα

})
and E ∈ Nα. Then,

since p−1α (E) =
∏
β∈AEβ where Eβ = Yβ ∈ Nβ for β 6= α and Eα = E ∈ Nα, we have

{
p−1α (E) :

E ∈ Nα and α ∈ A
}
⊆ N and thus

⊗
α∈ANα ⊆ N by Lemma 1. On the other hand, let Eα ∈ Nα and

suppose A is countable. Then, since any σ-algebra is closed under finite intersections (see Proposition 1),⋂
α∈A p

−1
α (Eα) ∈

⊗
α∈ANα, where

⋂
α∈A p

−1
α (Eα) =

∏
α∈AEα holds and thus

{∏
α∈AEα : Eα ∈

Nα
}
⊆
⊗

α∈ANα. Finally, by Lemma 1, we obtain N ⊆
⊗

α∈ANα and therefore N =
⊗

α∈ANα
when A is countable.

Proposition 11. Let (X,M) and (Yα,Nα) (α ∈ A) be measurable spaces, and denote N .
=
⊗

α∈ANα.

Then, f : X → Y is (M,N )-measurable iif fα = pα ◦ f is (M,Nα)-measurable for all α ∈ A.

Proof. Since every pα is (N ,Nα)-measurable by Corollary 3 and the composition of measurable functions

is also measurable by Proposition 8, fα = pα◦f : X → Yα is (M,Nα)-measurable for each α ∈ A if f is

(M,N )-measurable. Conversely, if each fα is (M,Nα)-measurable, then for all E ∈ Nα and each α ∈ A,

f−1(p−1α (E)) = f−1α (E) ∈M; the proof is completed by N = σ
({
p−1α (E) : E ∈ Nα and α ∈ A

})
and

Proposition 7.

IV. BOREL σ-ALGEBRA, SOME TOPOLOGY, AND (BX ,BY )-MEASURABILITY

The concept of the abstract Borel σ-algebra is essentially connected to the open sets and general topology.

Thus, we begin this section with the general definition of topology and open/closed sets shown below.

Definition 7. A topological space is an ordered pair (X, τX), where X is a set and τX is a collection

of subsets of X , satisfying the following axioms:

1) φ, X ∈ τX ,

2) {Eα}α∈A ⊆ τX =⇒
⋃
α∈A

Eα ∈ τX (closed under arbitrary unions),

3) E1, E2, · · · , En ∈ τX =⇒ E1 ∩ E2 ∩ · · · ∩ En ∈ τX (closed under finite intersections).

τX is called a topology on X; each member U of τX is said to be an open set; each complement U c is

called a closed set.
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If the topology τX is well-understood, we simply say that X is a topological space. In this section, we

suppose X and Y are topological spaces and denote their topologies by τX and τY , respectively. The

open sets in τX and τY are denoted by U and V , respectively.

Definition 8. A Borel σ-algebra BX on a topological space X is the σ-algebra generated by its

topology τX (the collection of all open sets), i.e., BX
.
= σ{τX}.

A countable intersection of open sets is called a Gδ set; a countable union of closed sets is called an Fσ

set; a countable union of Gδ sets is called a Gδσ set; a countable intersection of Fσ set is called an Fσδ

set (here, δ and σ stand for intersection and union, respectively). By Proposition 1 and the definitions of

a topology and a σ-algebra above, we obtain the following.

Proposition 12. BX contains the followings.

1) all of the open sets and closed sets;

2) arbitrary unions of open sets and arbitrary intersections of closed sets;

3) all of Gδ and Fσ sets;

4) all of Gδσ and Fσδ sets.

Proof. Since τX ⊆ σ{τX}, BX contains all of the open sets U and their arbitrary unions. Since a

σ-algebra is closed under taking complements, BX also contains all of the closed sets U c and by De

Morgan’s laws, their arbitrary intersections. Moreover, a σ-algebra is closed under countable unions and

intersections, and thereby BX includes any Fσ set (any countable union of closed sets) and Gδ set (any

countable intersection of open sets). Likewise, any Fσδ sets and Gδσ sets also belong to BX .

Such characterization of a σ-algebra via topology gives the following property.

Proposition 13. Every continuous function f : X → Y is (BX ,BY )-measurable.

Proof. f is continuous iif f−1(V ) is open in X for every open set V ∈ τY . Hence, for every V ∈ τY ,

f−1(V ) ∈ BX and the proof is complete by Propositoin 7.

Similarly to Proposition 2, we obtain the following proposition for a family of topologies.

Proposition 14. If {τX,α}α∈A is a family of topologies on X , τX =
⋂
α∈A τX,α is also a topology on X .

Proof. Since φ, X ∈ τX,α for all α ∈ A, they also belongs to τX . Next, suppose {Uβ}β∈B ⊆ τX , where

B is an index set. Then, Uβ ∈ τX implies that Uβ ∈ τα,X for all β ∈ B. Since τX,α is a topology, we

obtain
⋃
β∈B Uβ ∈ τX,α for all α ∈ A, implying that

⋃
β∈B Uβ ∈ τX . Likewise, one can also show that

τX is closed under finite intersections. Therefore, τX is a topology.
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Definition 9. For any family U ⊆ P(X), τ(U) denotes the smallest topology on X that contains U; we

call τ(U) the topology generated by U .

Remark 4. Note that for any family U ⊆ P(X), there is at least one topology, namely, the power set

P(X) itself, the largest topology on X , that contains U . Moreover, since any (uncountable) intersection

of topologies is also a topology as shown in Proposition 14, the smallest topology τ(U) in Definition 9

can be recognized as the intersection of all topologies containing U . Moreover, if U is understood, one

can construct such a topology τX by the following procedure:

1) add φ, every member of U , and X to τX ;

2) add all finite intersections of the sets in τX to τX ;

3) add all arbitrary unions of the sets in τX to τX .

Here, the order of 1)–3) is strict and not interchangeable.

Proposition 15. Let (Y, d) be a metric space and B(y, r)
.
= {z ∈ Y : d(y, z) < r} be an open ball

centerred at y ∈ Y with its radius r > 0. Define τd ⊆ P(Y ) as

V ∈ τd iif ∀y ∈ V : ∃r > 0 such that B(y, r) ⊆ V. (4)

Then, τd is a topology on Y . Moreover, every V ∈ τd is a union of open balls.

Proof. First, note that Y ∈ τd is true since B(y, r) ⊆ Y holds for any r > 0 by the definition of B(y, r).

Moreover, (4) is true vacuously (any statement that starts with ∀x ∈ φ is true, as there is no x in the

empty set to falsify the rest of the statement). Hence, φ ∈ τd. Next, let {Vα}α∈A ⊆ τd and y ∈ Vβ for

some β ∈ A. Then, there exists r > 0 such that B(y, r) ⊆ Vβ and hence, B(y, r) ⊆
⋃
α∈A Vα, that is,⋃

α∈A Vα ∈ τd. In a similar manner, suppose V1, V2, · · · , Vn ∈ τd and y ∈ Vj for all j = 1, 2, · · · , n.

Then, for each j, there is rj > 0 such that B(y, rj) ⊆ Vj . Hence, B(y, r) ⊆ Vj for all j = 1, 2, · · · , n,

where r = min{rj}nj=1. That is, B(y, r) ⊆
⋂n
j=1 Vj and thereby

⋂n
j=1 Vj ∈ τd. Therefore, τd is a

topology on Y .

Moreover, for any V ∈ τd, it is obvious that
⋃
y∈V B(y, ry) ⊆ V for some ry > 0 by (4). Conversely,

since each y ∈ V is obviously contained in B(y, ry), V = {y ∈ V } ⊆
⋃
y∈V B(y, ry). Therefore, every

V ∈ τd is the union of open balls B(y, ry).

The topology τd in Proposition 15 is called the topology on Y generated by the metric d. Since every

V ∈ τd is a union of open balls by Proposition 15, the collection of all open balls

E =
{
B(y, r) : y ∈ Y and r > 0

}
(5)

is a base of the topology τd.
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Definition 10. A collection E of subsets of Y is said to be a base of a topology τY on Y iif every V ∈ τY
is a union of members of E . The topological space Y is said to be second countable iif its topology τY

has a countable base E .

Definition 11. A subset D of Y is said to be dense iif every point y ∈ Y either belongs to D or is a

limit point of D. A topological space Y is separable if it contains a countable, dense subset D.

Proposition 16. A metric space is separable iif it is second countable.

Proof. Every second countable space is also separable. To prove the necessity, suppose Y is a separable

metric space. Then, Y contains a countable, dense subset D. The set Q of all rational numbers is

countable, so

B
.
= {B(y, r) : y ∈ D and 0 < r ∈ Q}

is a countable collection of open balls. Let τd be the topology on Y generated by d and V ∈ τd. Then,

for each ȳ ∈ V , there is r̄ > 0 such that B(ȳ, r̄) ⊆ V . Next, if ȳ ∈ V ∩D, set y = ȳ; otherwise, choose

y ∈ D such that d(ȳ, y) < r for a rational number r ∈ (0, r̄/2]. Then, by triangular inequality, for any

z ∈ B(y, r), we obtain d(ȳ, z) ≤ d(ȳ, y) + d(y, z) < 2r ≤ r̄, which implies z ∈ B(ȳ, r̄). In summary,

B(y, r) ⊆ B(ȳ, r̄) ⊆ V and ȳ ∈ B(y, r).

Therefore, for each ȳ ∈ V , there is y ∈ D and a rational number ry > 0 such that ȳ ∈ B(y, ry) ⊆ V ,

where B(y, ry) ∈ B. This implies⋃
y∈D

B(y, ry) ⊆ V = {ȳ ∈ V } ⊆
⋃
y∈D

B(y, ry).

Therefore, V =
⋃
y∈D B(y, ry), that is, Y is second countable.

Now, let Yj (j = 1, 2, · · · , n) be a metric space with its metric dj : Yj × Yj → R+ and

Y
.
=

n∏
j=1

Yj = Y1 × Y2 × · · · × Yn.

Then, Y is a metric space with the product metric d : Y × Y → R+:

d(y, z)
.
= max{d1(y1, z1), d2(y2, z2), · · · , dn(yn, zn)}, (6)

where y = (y1, y2, · · · , yn) ∈ Y and z = (z1, z2, · · · , zn) ∈ Y . Let BYj
= σ{τdj} (j = 1, 2, · · · , n) and

BY = σ{τd} be the Borel σ-algebras generated by the topologies τdj and τd on Yj and Y generated by

dj and d, respectively. Denote the open balls in Y and Yj (j = 1, 2, · · · , n) by B(y, r) and Bj(yj , r) for

y ∈ Y and yj ∈ Yj , respectively.
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Lemma 4. B(y, r) =
∏n
j=1Bj(yj , r) for each y = (y1, y2, · · · , yn) ∈ Y and r > 0.

Proof. Every z = (z1, z2, · · · , zn) ∈ B(y, r) satisfies d(y, z) < r which holds iif d(yj , zj) < r for all j =

1, 2, · · · , n by the definition of the product metric (6). This directly proves B(y, r) =
∏n
j=1Bj(yj , r).

Lemma 5. If Yj’s are all separable, then so is Y .1

Proof. For each i = 1, 2, · · · , n, let Dj ⊆ Yj be a countable dense subset of Yj and y = (y1, y2, · · · , yn) ∈ Y

with each yj ∈ Yj . Then, since Dj is dense in Yj , there is a sequence {zj,k}∞k=1 in Dj such that

lim
k→∞

dj(yj , zj,k) = 0 (7)

(if yk ∈ Dj , {zj,k}∞k=1 with zj,k = yk ∈ Dj for all k is trivially such a sequence). For each k ∈ N, let

z(k)
.
= (z1,k, z2,k, · · · , z3,k) ∈ D, where D .

=
∏n
j=1Dj . Then, by (7) and the definition of the metric d,

lim
k→∞

d(y, z(k)) = lim
k→∞

(
max{d(y1, z1,k), d(y2, z2,k), · · · , d(yn, zn,k)}

)
= 0,

which implies that every y ∈ Y is a limit point of D and hence, D is a dense subset of Y . Moreover, D

is countable since any finite product of countable subsets is also countable. Hence, Y is separable.

Lemma 6. Every projection map pj : Y → Yj is continuous.

Proof. Suppose y, z ∈ Y and let yj , zj ∈ Yj be their j-th elements. Then, we have pj(y) = yj and

pj(z) = zj . Set δ = ε > 0. Then, by the definition of the produce metric (6),

d(y, z) < δ =⇒ dj(pj(y), pj(z)) = dj(yj , zj) < ε,

implying continuity of pj : (Y, d)→ (Yj , dj).

Proposition 17.
⊗n

j=1 BYj
⊆ BY . Moreover, if Yj’s are all separable, then

⊗n
j=1 BYj

= BY .

Proof. By Proposition 10, we have
⊗n

j=1 BYj
= σ

({
π−1j (Vj) : Vj ∈ τdj and j = 1, 2, · · · , n

})
, where

Vj is open in Yj . Since pj is continuous by Lemma 6, π−1j (Vj) is open in Y . Hence,
⊗n

j=1 BYj
⊆ BY by

Lemma 1. Moreover, suppose Yj’s are all separable. Then, they are all second countable by Proposition 16,

so that there exist countable bases Bj ⊆ τdj , i.e., countable collection of open balls Bj , such that every

Vj ∈ Yj is a union of members of Bj . Here, the union is actually a countable union since Bj is countable,

which yields BYj
= σ{Bj} (j = 1, 2, · · · , n). Since Y is also second countable by Lemma 5 and

Proposition 16, and its base B is a countable collection of open balls B. Since B =
∏n
j=1Bj by Lemma 4,

we therefore obtain BY = σ
{∏n

j=1Bj : Bj ∈ Bj

}
and

⊗n
j=1 BYj

= BY by Proposition 10.

1In the most general situation, every countable product of separable topological spaces is also separable.
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Since R is separable, we obtain the following corollary.

Corollary 5. BRn =
⊗n

1 BR.


