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Chapter 1

σ-Algebra and Measurable Functions

In this part, we summarize some of the basis theory on σ-algebra and measurable functions, which have
served as the fundamentals to measure theory, Lebesque integration, probability, etc. The materials either
directly come from or is strongly related to those in Chapters 1.2, 2.1, and 2.4 in Folland (1999)’s real
analysis book. Related to them, this note also introduces some basic theory of topology and set theory that
also make the statements about σ-algebra and measurable functions clear and rigorous.

1.1 σ-algebra

In this note,


X and Y denote any non-empty sets;

f : X → Y is any mapping from X to Y ;

M ⊆ P(X) and N ⊆ P(Y ) denote any (or some given) σ-algebras on X and Y , respectively.

(X,M) (and (Y,N)) is called a measurable space. Here, a σ-algebra M on X (or N on Y ) is precisely defined
as follows.

Definition 1.1. A non-empty subset M ⊆ P(X) is said to be a σ-algebra on X iff:

1) {Ei}∞i=1 ⊆ M =⇒
∞⋃
i=1

Ei ∈ M (closed under countable unions),

2) E ∈ M =⇒ Ec ∈ M (closed under complements).

If the first property is replaced by

1′) {Ei}Ni=1 ⊆ M =⇒
N⋃
i=1

Ei ∈ M (closed under finite unions),

then, M is said to be an algebra on X.

Note that any σ-algebra on X is an algebra on X, but not vice versa. As discussed later, a σ-algebra and
an algebra are the domains of a measure and a premeasure, respectively. The basic properties of a σ-algebra
(and an algebra) are as follows.

Proposition 1.1. The followings hold for any σ-algebra M or any algebra M on X:

1. ∅, X ∈ M,

2.

for a σ-algebra M: {Ei}∞i=1 ⊆ M =⇒
⋂∞

i=1Ei ∈ M (closed under countable intersections),

for an algebra M: {Ei}Ni=1 ⊆ M =⇒
⋂N

i=1Ei ∈ M (closed under finite intersections),

5



6 CHAPTER 1. σ-ALGEBRA AND MEASURABLE FUNCTIONS

3. E, F ∈ M =⇒ E \ F ∈ M and E△F ∈ M.

Proof. The second part can be directly proven as follows:

for a σ-algebra M:

∞⋂
i=1

Ei =
( ∞⋃

i=1

Ec
i

)c
∈ M,

(
for an algebra M:

N⋂
i=1

Ei =
( N⋃

i=1

Ec
i

)c
∈ M

)
.

Then, the first part is obvious since for E ∈ M, we have X = E ∪ Ec ∈ M and ∅ = E ∩ Ec ∈ M.
Likewise, since M is closed under countable unions, countable intersections, and complements, we finally
have E \ F = E ∩ F c ∈ M and E△F .

= (E \ F ) ∪ (F \ E) ∈ M.

Example 1.1. M = P(X) and M = {X,∅} are the largest and smallest σ-algebra on X, respectively.

The following shows that the (uncountable) intersection of σ-algebras is also a σ-algebra.

Proposition 1.2. Let {Mα}α∈A be a family of σ-algebras on X. Then, M =
⋂

α∈A Mα is a σ-algebra.

Proof. (closed under complements) Assume E ∈ M. Then, by definition, E ∈ Mα for all α ∈ A, which
again implies Ec ∈ Mα for all α ∈ A. Hence, we obtain Ec ∈

⋂
α∈A Mα = M.

(closed under countable unions) Assume {Ei}∞i=1 ⊆ M. Then, Ei ∈ M implies that Ei ∈ Mα for all
α ∈ A. Since Mα is a σ-algebra, we obtain

⋃∞
i=1Ei ∈ Mα for all α ∈ A, implying that

⋃∞
i=1Ei ∈ M.

Definition 1.2. For any family E ⊆ P(X), σ(E) denotes the smallest σ-algebra on X that contains E; we
call σ(E) the σ-algebra generated by E.

Remark 1.1. Note that for any family E ⊆ P(X), there is at least one σ-algebra, namely, the power set
P(X) itself, the largest σ-algebra, that contains E. Moreover, since any (uncountable) intersection of σ-
algebras is also a σ-algebra as shown in Proposition 1.2, the smallest σ-algebra σ(E) in Definition B.1 can
be constructed and recognized as the intersection of all σ-algebras containing E.

By Proposition 1.2, the following lemma is obvious.

Lemma 1.1. If E ⊆ M, then σ(E) ⊆ M.

1.2 Abstract Measurable Functions

Lemma 1.2. The inverse mapping f−1 : P(Y ) → P(X) defined by f−1(E)
.
= {x ∈ X : f(x) ∈ E} preserves

the unions, intersections, and complements. That is,

1) f−1

( ⋃
α∈A

Eα

)
=
⋃
α∈A

f−1(Eα),

2) f−1

( ⋂
α∈A

Eα

)
=
⋂
α∈A

f−1(Eα),

3) f−1(Ec) = (f−1(E))c.

for any indexed family {Eα}α∈A ⊆ P(Y ) and any E ∈ P(Y ).

Proposition 1.3. Any M ⊆ P(X) given by M = {f−1(E) : E ∈ N} is a σ-algebra on X.

Proof. Let {Ei}∞i=1 ⊆ N and E ∈ N. Then,
⋃∞

i=1Ei ∈ N and Ec ∈ N since N is a σ-algebra. Hence,

∞⋃
i=1

f−1(Ei) = f−1

( ∞⋃
i=1

Ei

)
∈ M

(f−1(E))c = f−1(Ec) ∈ M

by Lemma 1.2.
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Definition 1.3. A function f : X → Y is said to be (M,N)-measurable iff: E ∈ N =⇒ f−1(E) ∈ M.

Proposition 1.4. A function f : X → Y is always (M,N)-measurable for M given in Proposition 1.3,

Proof. Trivial by Definition 1.3.

The (M,N)-measurability can be understood in a sense that the restricted function f−1|N : N → M on the
σ-algebra domain N ⊆ P(Y ) is well-defined in such a way that its image is contained by its codomain M as
in the usual definition of a function. This observation can be summarized as follows.

Proposition 1.5. f : X → Y is (M,N)-measurable iff Im(f−1|N) ⊆ M.

Corollary 1.1. If M and N are respective σ-algebras on X and Y such that M ⊆ M and N ⊆ N, then

f is (M,N)-measurable =⇒ f is (M,N)-measurable.

Proof. Trivial by Proposition 1.5 and Im(f−1|N) ⊆ Im(f−1|N) ⊆ M ⊆ M.

Corollary 1.2. For any σ-algebra N on Y , any function f : X → Y is (P(X),N)-measurable.

Proof. Trivial by Im(f−1|N) ⊆ P(X), where P(X) is the largest σ-algebra on X (see Example 1.1).

The following is the dual to Propositions 1.3 and 1.4.

Lemma 1.3. Any N ⊆ P(Y ) given by N = {E : f−1(E) ∈ M} is a σ-algebra on Y ; for such N, f is always
(M,N)-measurable.

Proof. Let {Ei}∞i=1 ⊆ N and E ∈ N. Then, we have f−1(Ei) ⊆ M for each i ∈ N and f−1(E) ∈ M. Since M

is a σ-algebra, we therefore obtain by Lemma 1.2

f−1

( ∞⋃
i=1

Ei

)
=

∞⋃
i=1

f−1(Ei) ∈ M,

f−1(Ec) = (f−1(E))c ∈ M,

meaning that
⋃∞

i=1Ei ∈ N and Ec ∈ N. Therefore, N is a σ-algebra on Y . Moreover, the definition of N
gives Im(f−1|N) ⊆ M, and hence f is (M,N)-measurable by Proposition 1.5.

Proposition 1.6. For any subset E ⊆ Y , f is (M, σ(E))-measurable iff Im(f−1|E) ⊆ M, i.e., iff

f−1(E) ∈ M for all E ∈ E.

Proof. (=⇒) If f is (M, σ(E))-measurable, then E ⊆ σ(E) and Proposition 1.5 imply that

Im(f−1|E) ⊆ Im(f−1|σ(E)) ⊆ M.

(⇐=) The assumption assures the expression E = {E ∈ E : f−1(E) ∈ M}. Moreover, the σ-algebra N given
in Lemma 1.3 obviously satisfies E = {E ∈ E : f−1(E) ∈ M} ⊆ {E ∈ P(Y ) : f−1(E) ∈ M} = N and
hence, σ(E) ⊆ N by Lemma 1.1. This obviously results in Im(f−1|σ(E)) ⊆ Im(f−1|N) ⊆ M, and hence f is
(M, σ(E))-measurable by Proposition 1.5.

Proposition 1.7. Suppose f : X → Y is (M,N)-measurable and g : Y → Z is (N,O)-measurable. Then,
the composition g ◦ f : X → Z is (M,O)-measurable.

Proof. By measurability, f−1(E) ∈ M for all E ∈ N and g−1(F ) ∈ N for all F ∈ O. Hence, it is obvious that
f−1(g−1(F )) ∈ M for all F ∈ O, and the proof is completed by (g ◦ f)−1 = f−1 ◦ g−1 = f−1(g−1(·)).
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1.3 Product σ-Algebra and Measurable Functions on a Cartesian Product

Let {Yα}α∈A be a family of non-empty sets Yα indexed by α ∈ A.

Definition 1.4. The Cartesian product
∏

α∈A Yα is the set of all functions y : A →
⋃

α∈A Yα such that
y(α) ∈ Yα for every α ∈ A. We denote yα

.
= y(α) and call it the α-th element of y.

If the sets Yα are all equal to some fixed set Z, then we denote
∏

α∈A Yα by ZA. Moreover, if

A is finite and given by A = {1, 2, 3, · · · , n} for some n ∈ N, (1.1)

then
∏

α∈A Yα and ZA will be denoted by Y1×Y2×· · ·×Yn and Zn, respectively. For notational convenience,
we also denote Y

.
=
∏

α∈A Yα throughout this section.

Definition 1.5. The α-th projection map pα : Y → Yα is such that pα(y) = yα for all y ∈ Y .

Remark 1.2. When (1.1) is true for the indexed set A, the Cartesian product Y = Y1×Y2×· · ·×Yn is usually
defined as the set of all tuples (y1, y2, · · · , yn) such that yα ∈ Yα for α = 1, 2, · · · , n. This definition is set-
theoretically different from the Cartesian product defined above in Definition 1.4. However, both definitions
with the notation yα

.
= y(α) above agree that

yα ∈ Yα for any α ∈ A and thus pα(y) = yα for any α ∈ A and all y ∈ Y . (1.2)

Likewise, all of the theorems and proofs will be also true for the finite case (1.1).

Now, let for each α ∈ A:

Nα ⊆ P(Yα) be a σ-algebra on Yα;

fα : X → Yα be a function from X to Yα indexed by α ∈ A.

The σ-algebra M(f·) ⊆ P(X) given by M(f·) = σ
({
f−1
α (E) : E ∈ Nα and α ∈ A

})
is called the σ-algebra

(on X) generated by {fα}α∈A. A product σ-algebra on Y is the σ-algebra M(p·) generated by {pα}α∈A when
X = Y . We denote this σ-algebra M(p·) by

⊗
α∈A Nα.

Proposition 1.8. fα is (M(f·),Nα)-measurable for each α ∈ A.

Proof. Let Mα
.
= σ({f−1

α (E) : E ∈ Na}). Then, Propositions 1.3 and 1.4 imply that Mα is a σ-algebra and
fα is (Mα,Nα)-measurable. Since Mα ⊆ M(f·), the proof is completed by Corollary 1.1.

Corollary 1.3. pα is (
⊗

α∈A Nα,Nα)-measurable for each α ∈ A.

Remark 1.3. Note that
⋂

α∈A Mα is also a σ-algebra (on X) by Proposition 1.2, and
⋂

α∈A Mα ⊆ M(f·)
holds by Mα ⊆ M(f·), where Mα

.
= σ({f−1

α (E) : E ∈ Nα}). However,
⋂

α∈A Mα = M(f·) does not hold in
general, and fα is not necessarily (

⋂
α∈A Mα,Nα)-measurable.

Proposition 1.9. Suppose Eα ⊆ P(Yα) and Nα = σ(Eα) for each α ∈ A. Then,⊗
α∈A

Nα = σ
({
p−1
α (E) : E ∈ Eα and α ∈ A

})
. (1.3)

Moreover, if Yα ∈ Eα for each α ∈ A, then
⊗

α∈A Nα ⊆ σ
({∏

α∈AEα : Eα ∈ Eα

})
. In addition to that, if

A is countable, then
⊗

α∈A Nα = σ
({∏

α∈AEα : Eα ∈ Eα

})
.

Proof. Let F
.
=
{
p−1
α (E) : E ∈ Eα and α ∈ A

}
⊆ P(Y ). Then, obviously, F ⊆

⊗
α∈A Nα, and thus we

obtain σ(F) ⊆
⊗

α∈A Nα by Lemma 1.1. On the other hand, Lemma 1.3 implies that for each α ∈ A,
{E ⊆ Yα : p−1

α (E) ∈ σ(F)} is a σ-algebra on Yα that obviously contains Eα (see the definition of F) and
thus, by Lemma 1.1, it also contains Nα = σ(Eα). In other words, for each α ∈ A, we have p−1

α (E) ∈ σ(F)
whenever E ∈ Nα, meaning that

⊗
α∈A Nα ⊆ σ(F) by Lemma 1.1. Therefore,

⊗
α∈A Nα = σ(F).

Next, let G
.
=
{∏

α∈AEα : Eα ∈ Eα

}
and E ∈ Eα. Then, since p

−1
α (E) =

∏
β∈AEβ where Eβ = Yβ ∈ Eβ

for β ̸= α and Eα = E ∈ Eα, we have
{
p−1
α (E) : E ∈ Eα and α ∈ A

}
⊆ G ⊆ σ(G) and thus

⊗
α∈A Nα ⊆ σ(G)

by (1.3) and Lemma 1.1. On the other hand, let Eα ∈ Eα for each α ∈ A and suppose A is countable.
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Then, since any σ-algebra is closed under countable intersections (see Proposition 1.1), we have by (1.3) that⋂
α∈A p

−1
α (Eα) ∈

⊗
α∈A Nα, where

⋂
α∈A p

−1
α (Eα) =

∏
α∈AEα holds and thus{ ∏

α∈A

Eα : Eα ∈ Eα

}
⊆
⊗
α∈A

Nα.

Finally, by Lemma 1.1, σ(G) ⊆
⊗

α∈A Nα and therefore σ(G) =
⊗

α∈A Nα when A is countable.

By letting Eα = Nα for all α ∈ A in Proposition 1.9, we obtain the following corollary.

Corollary 1.4.
⊗

α∈A Nα ⊆ σ
({∏

α∈ANα : Nα ∈ Nα

})
. Moreover, if A is countable, then

⊗
α∈A

Nα = σ

({ ∏
α∈A

Nα : Nα ∈ Nα

})
.

Proof. For the completeness, we provide the independent proof, which is almost same to the second paragraph
of the proof of Proposition 1.9. Let N

.
= σ

({∏
α∈ANα : Nα ∈ Nα

})
and N ∈ Nα. Then, since p−1

α (N) =∏
β∈ANβ where Nβ = Yβ ∈ Nβ for β ̸= α and Nα = N ∈ Nα, we have

{
p−1
α (N) : N ∈ Nα and α ∈ A

}
⊆ N

and thus
⊗

α∈A Nα ⊆ N by Lemma 1.1. On the other hand, let Nα ∈ Nα and suppose A is countable. Then,
since any σ-algebra is closed under countable intersections (see Proposition 1.1),

⋂
α∈A p

−1
α (Nα) ∈

⊗
α∈A Nα,

where
⋂

α∈A p
−1
α (Nα) =

∏
α∈ANα holds and thus

{∏
α∈ANα : Nα ∈ Nα

}
⊆
⊗

α∈A Nα. Finally, by
Lemma 1.1, we obtain N ⊆

⊗
α∈A Nα and therefore N =

⊗
α∈A Nα when A is countable.

Proposition 1.10. Let (X,M) and (Yα,Nα) (α ∈ A) be measurable spaces, and denote N
.
=
⊗

α∈A Nα.
Then, f : X → Y is (M,N)-measurable iff fα = pα ◦ f is (M,Nα)-measurable for all α ∈ A.

Proof. Since every pα is (N,Nα)-measurable by Corollary 1.3 and the composition of measurable functions
is also measurable by Proposition 1.7, fα = pα ◦ f : X → Yα is (M,Nα)-measurable for each α ∈ A if f
is (M,N)-measurable. Conversely, if each fα is (M,Nα)-measurable, then for all N ∈ Nα and each α ∈ A,
f−1(p−1

α (N)) = f−1
α (N) ∈ M; the proof is completed by N = σ

({
p−1
α (N) : N ∈ Nα and α ∈ A

})
and

Proposition 1.6.

1.3.1 The Special Case A = {1, 2}.
Now, consider the special case A = {1, 2} with the two measurable spaces denoted (X,M) and (Y,N), which
define the product σ-algebra M⊗N of X × Y and the rectangles M ×N ⊆ X × Y for M ∈ M and N ∈ N.
In this case, we obtain the following.

Corollary 1.5. The collection A of finite disjoint unions of rectangles M ×N with M ∈ M and N ∈ N is
an algebra. Moreover, M⊗N = σ(A) = σ

({
M ×N :M ∈ M, N ∈ N

})
.

Proof. Note that for any M1,M2 ∈ M and any N1, N2 ∈ N,

(M1 ×N1) ∩ (M2 ×N2) =
{
(x, y) ∈ X × Y : x ∈M1 ∩M2 and y ∈ N1 ∩N2

}
= (M1 ∩M2)× (N1 ∩N2),

and for any M ∈ M and N ∈ N,

(M ×N)c = {(x, y) ∈ X × Y : x ̸∈M or y ̸∈ N}
=
{
(x, y) ∈ X × Y : (x ̸∈M and y ∈ Y ) or (x ∈ X and y ̸∈ N)

}
= (M c × Y ) ∪ (X ×N c).

Therefore, Proposition A.1 proves that the collection A of finite disjoint unions of rectanglesM×N (M ∈ M

and N ∈ N) is an algebra. Moreover, let R
.
=
{
M × N : M ∈ M, N ∈ N

}
. Then, M ⊗ N = σ

(
R
)
by

Corollary 1.4 and σ(A) = σ(R) is obvious as follows. σ(R) is the σ-algebra that obviously contains any finite
disjoint unions of rectangles in R, implying A ⊆ σ(R) and by Lemma 1.1, σ(A) ⊆ σ(R). Conversely, it is
obvious that R ⊆ A and hence R ⊆ σ(A). Therefore, σ(R) ⊆ σ(A) again by Lemma 1.1.
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Now, for any subset E ⊆ X × Y , define the x-section Ex and y-section Ey of E by

Ex
.
=
{
y ∈ Y : (x, y) ∈ E

}
and Ey .

=
{
x ∈ X : (x, y) ∈ E

}
.

Similarly, for any function f : X × Y → Z for a measurable space (Z,O), define fx : Y → Z for each x ∈ X
and fy : X → Z for each y ∈ Y as

fx(y) = fy(x) = f(x, y) ∀(x, y) ∈ X × Y.

Proposition 1.11. If E ∈ M⊗N, then Ex ∈ N for all x ∈ X and Ey ∈ M for all y ∈ Y .

Proof. Let R
.
=
{
E ⊆ X × Y : Ey ∈ M for all y ∈ Y and Ex ∈ N for all x ∈ X

}
. Then, R contains R

defined in the proof of Corollary 1.5 (e.g., (M ×N)x is equal to N (∈ N) if x ∈M and ∅ (∈ N) if x ̸∈M).
Moreover, for any {Ei}∞i=1 ⊆ R and E ∈ R,( ∞⋃

i=1

Ei

)
x

=

{
(x, y) ∈ X × Y : (x, y) ∈ Ei for some i ∈ N

}
x

=
{
y ∈ Y : (x, y) ∈ Ei for some i ∈ N

}
=

∞⋃
i=1

(Ei)x ∈ N

(Ec)x =
{
(x, y) ∈ X × Y : (x, y) ̸∈ E

}
x
=
{
y ∈ Y : (x, y) ̸∈ E

}
= (Ex)

c ∈ N

and similarly,
(⋃∞

i=1Ei

)y
=
⋃∞

i=1(Ei)
y ∈ M and (Ec)y = (Ey)c ∈ M. Therefore, R is a σ-algebra and thus

by Lemma 1.1 and Corollary 1.5, R ⊇ σ(R) = M⊗N, which completes the proof.

Proposition 1.12. If f is (M ⊗ N,O)-measurable, then fx is (N,O)-measurable for all x ∈ X and fy is
(M,O)-measurable for all y ∈ Y .

Proof. Let E
.
= f−1(F ) ∈ M⊗N for F ∈ O. Then, for any x ∈ X, we have

Ex =
{
f−1(F )

}
x
=
{
(x, y) ∈ X × Y : f(x, y) ∈ F

}
x
=
{
y ∈ Y : f(x, y) ∈ F

}
= f−1

x (F )

and thus by Proposition 1.11, f−1
x (F ) = Ex ∈ N for all x ∈ X, meaning that fx is (N,O)-measurable for all

x ∈ X. Similarly, for all y ∈ Y , fy is (M,O)-measurable.

1.4 Borel σ-Algebra, Some Topology, and Measurable Functions

The concept of the abstract Borel σ-algebra is essentially connected to the open sets and general topology.
Thus, we begin this section with the general definition of topology and open/closed sets shown below.

Definition 1.6. A topological space is an ordered pair (Y,T), where Y is a non-empty set and T is a collection
of subsets of Y , satisfying the following axioms:

1) ∅, Y ∈ T,

2) {Vα}α∈A ⊆ T =⇒
⋃
α∈A

Vα ∈ T (closed under arbitrary unions),

3) V1, V2, · · · , Vn ∈ T =⇒ V1 ∩ V2 ∩ · · · ∩ Vn ∈ T (closed under finite intersections).

T is called a topology on Y ; each member V of T is said to be an open set; each complement U c is called a
closed set. If the topology T is well-understood, we simply say that Y is a topological space.

Definition 1.7. A Borel σ-algebra B on a topological space Y is the σ-algebra generated by its topology T

(the collection of all open sets), i.e., B
.
= σ(T).

A countable intersection of open sets is called a Gδ set; a countable union of closed sets is called an Fσ set;
a countable union of Gδ sets is called a Gδσ set; a countable intersection of Fσ set is called an Fσδ set (here,
δ and σ stand for intersection and union, respectively). By Proposition 1.1 and the definitions of a topology
and a σ-algebra above, we obtain the following.
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Proposition 1.13. B contains the followings.

1. all of the open sets and closed sets;

2. arbitrary unions of open sets and arbitrary intersections of closed sets;

3. all of Gδ and Fσ sets;

4. all of Gδσ and Fσδ sets.

Proof. Since T ⊆ σ(T), B contains all of the open sets U and their arbitrary unions. Since a σ-algebra
is closed under taking complements, B also contains all of the closed sets U c and by De Morgan’s laws,
their arbitrary intersections. Moreover, a σ-algebra is closed under countable unions and intersections, and
thereby B includes any Fσ set (any countable union of closed sets) and Gδ set (any countable intersection
of open sets). Likewise, any Fσδ sets and Gδσ sets also belong to B.

Such characterization of a Borel σ-algebra via topology gives the following property. In this section, whenever
necessary, we denote TX and TY the respective topologies on X and Y ; BX

.
= σ(TX) and BY

.
= σ(TY ) their

Borel σ-algebras; U and V open sets in TX and TY (otherwise, TY and BY are abbreviated as T and B),
respectively.

Proposition 1.14. Every continuous function f : X → Y is (BX ,BY )-measurable.

Proof. f is continuous iff f−1(V ) is open in X for every open set V ∈ TY . Hence, for every V ∈ TY ,
f−1(V ) ∈ BX and the proof is complete by Propositoin 1.6.

Similarly to Proposition 1.2, we obtain the following proposition for a family of topologies.

Proposition 1.15. If {Tα}α∈A is a family of topologies on Y , T =
⋂

α∈A Tα is also a topology on Y .

Proof. Since ∅, Y ∈ Tα for all α ∈ A, they also belongs to T. Next, suppose {Vβ}β∈B ⊆ T, where B
is an index set. Then, Vβ ∈ T implies that Vβ ∈ Tα for all β ∈ B. Since Tα is a topology, we obtain⋃

β∈B Vβ ∈ Tα for all α ∈ A, implying that
⋃

β∈B Vβ ∈ T. Likewise, one can also show that T is closed under
finite intersections. Therefore, T is a topology.

Definition 1.8. For any family V ⊆ P(Y ), T(V) denotes the smallest topology on Y that contains V; we
call T(V) the topology generated by V.

Remark 1.4. Note that for any family V ⊆ P(Y ), there is at least one topology, namely, the power set
P(Y ) itself, the largest topology on Y , that contains V. Moreover, since any (uncountable) intersection of
topologies is also a topology as shown in Proposition 1.15, the smallest topology T(V) in Definition 1.8 can be
recognized as the intersection of all topologies containing V. Moreover, if V is understood, one can construct
such a topology T by the following procedure:

1. add ∅, every member of V, and Y to T;

2. add all finite intersections of the sets in T to T;

3. add all arbitrary unions of the sets in T to T.

Here, the order of 1), 2) and 3) is strict and not interchangeable.

Proposition 1.16. Let (Y, d) be a metric space and B(y, r)
.
= {z ∈ Y : d(x, z) < r} be an open ball centerred

at y ∈ Y with its radius r > 0. Define Td ⊆ P(Y ) as

V ∈ Td iff ∀y ∈ V : ∃r > 0 such that B(y, r) ⊆ V. (1.4)

Then, Td is a topology on Y . Moreover, every V ∈ Td is a union of open balls.



12 CHAPTER 1. σ-ALGEBRA AND MEASURABLE FUNCTIONS

Proof. First, note that Y ∈ Td is true since B(y, r) ⊆ Y holds for any r > 0 by the definition of B(y, r).
Moreover, (1.4) is true vacuously (any statement that starts with ∀x ∈ ∅ is true, as there is no x in the empty
set to falsify the rest of the statement). Hence, ∅ ∈ Td. Next, let {Vα}α∈A ⊆ Td and y ∈ Vβ for some β ∈ A.
Then, there exists r > 0 such that B(y, r) ⊆ Vβ and hence, B(y, r) ⊆

⋃
α∈A Vα, that is,

⋃
α∈A Vα ∈ Td.

In a similar manner, suppose V1, V2, · · · , Vn ∈ Td, with
⋂n

i=1 Vi ̸= ∅, and y ∈ Vi for all i = 1, 2, · · · , n.
Then, for each i, there is ri > 0 such that B(y, ri) ⊆ Vi. Hence, B(y, r) ⊆ Vi for all i = 1, 2, · · · , n, where
r = min{ri}ni=1. That is, B(y, r) ⊆

⋂n
i=1 Vi and thereby

⋂n
i=1 Vi ∈ Td. Therefore, Td is a topology on Y .

Moreover, for any V ∈ Td, it is obvious that
⋃

y∈V B(y, ry) ⊆ V for some ry > 0 by (1.4). Conversely,

since each y ∈ V is obviously contained in B(y, ry), V = {y ∈ V } ⊆
⋃

y∈V B(y, ry). Therefore, every V ∈ Td

is the union of open balls B(y, ry).

The topology Td in Proposition 1.16 is called the topology on Y induced by the metric d. Since every
V ∈ Td is a union of open balls by Proposition 1.16, the collection of all open balls

E =
{
B(y, r) : y ∈ Y and r > 0

}
(1.5)

is a base of the topology Td.

Definition 1.9. A collection E of subsets of Y is said to be a base of a topology T on Y iff every V ∈ T

is a union of members of E. The topological space Y is said to be second countable iff its topology T has a
countable base E.

Definition 1.10. A subset D of Y is said to be dense iff every point y ∈ Y either belongs to D or is a limit
point of D. A topological space Y is separable if it contains a countable, dense subset D.

Proposition 1.17. A metric space is separable iff it is second countable.

Proof. Every second countable space is also separable. To prove the necessity, suppose Y is a separable
metric space. Then, Y contains a countable, dense subset D. The set Q of all rational numbers is countable,
which implies

B
.
= {B(y, r) : y ∈ D and 0 < r ∈ Q}

is a countable collection of open balls. Let Td be the topology on Y induced by d and V ∈ Td. Then, for
each ȳ ∈ V , there is r̄ > 0 such that B(ȳ, r̄) ⊆ V . Next, if ȳ ∈ V ∩D, set y = ȳ; otherwise, choose y ∈ D
such that d(ȳ, y) < r for a rational number r ∈ (0, r̄/2]. Then, by triangular inequality, for any z ∈ B(y, r),
we obtain d(ȳ, z) ≤ d(ȳ, y) + d(y, z) < 2r ≤ r̄, which implies z ∈ B(ȳ, r̄). In summary,

B(y, r) ⊆ B(ȳ, r̄) ⊆ V and ȳ ∈ B(y, r).

Therefore, for each ȳ ∈ V , there is y ∈ D and a rational number r > 0 such that ȳ ∈ B(y, r) ⊆ V , where
B(y, r) ∈ B. This implies ⋃

ȳ∈V

B(y, r) ⊆ V = {ȳ ∈ V } ⊆
⋃
ȳ∈V

B(y, r).

Therefore, V =
⋃

ȳ∈V B(y, r), that is, Y is second countable.

1.4.1 Borel σ-algebra on a Product Metric Space

Now, let Yi (i = 1, 2, · · · , n) be a metric space with its metric di : Yi × Yi → R+ and

Y
.
=

n∏
i=1

Yi = Y1 × Y2 × · · · × Yn.

Then, Y is a metric space with the product metric d : Y × Y → R+:

d(y, z)
.
= max{d1(y1, z1), d2(y2, z2), · · · , dn(yn, zn)}, (1.6)

where y = (y1, y2, · · · , yn) ∈ Y and z = (z1, z2, · · · , zn) ∈ Y . Let BYi = σ(Tdi) (i = 1, 2, · · · , n) and
BY = σ(Td) be the Borel σ-algebras generated by the topologies Tdi and Td on Yi and Y induced by the
metrics di and d, respectively. Denote the open balls in Y and Yi (i = 1, 2, · · · , n) by B(y, r) and Bi(yi, r)
for y ∈ Y and yi ∈ Yi, respectively.
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Lemma 1.4. B(y, r) =
∏n

i=1Bi(yi, r) for each y = (y1, y2, · · · , yn) ∈ Y and r > 0.

Proof. Every z = (z1, z2, · · · , zn) ∈ B(y, r) satisfies d(y, z) < r which holds iff di(yi, zi) < r for all i =
1, 2, · · · , n by the definition of the product metric (1.6). This directly proves B(y, r) =

∏n
i=1Bi(yi, r).

Lemma 1.5. If Yi’s are all separable, then so is Y .1

Proof. For each i = 1, 2, · · · , n, let Di ⊆ Yi be a countable dense subset of Yi and y = (y1, y2, · · · , yn) ∈ Y
with each yi ∈ Yi. Then, since Di is dense in Yi, there is a sequence {zij}∞j=1 in Di such that

lim
j→∞

di(yi, zij) = 0 (1.7)

(if yi ∈ Di, {zij}∞j=1 with zij = yi ∈ Di for all j is trivially such a sequence). For each j ∈ N, let

z(j)
.
= (z1j , z2j , · · · , znj) ∈ D, where D

.
=
∏n

i=1Di. Then, by (1.7) and the definition of the metric d,

lim
j→∞

d(y, z(j)) = lim
j→∞

(
max{d1(y1, z1j), d2(y2, z2j), · · · , dn(yn, znj)}

)
= 0,

which implies that every y ∈ Y is a limit point of D and hence, D is a dense subset of Y . Moreover, D is
countable since any finite product of countable subsets is also countable. Hence, Y is separable.

Lemma 1.6. Every projection map pi : Y → Yi is continuous.

Proof. Suppose y, z ∈ Y and let yi, zi ∈ Yi be the ith elements of y and z, respectively. Then, we have
pi(y) = yi and pi(z) = zi. Set δ = ε > 0. Then, by the definition of the produce metric (1.6),

d(y, z) < δ =⇒ di(pi(y), pi(z)) = di(yi, zi) < ε,

implying continuity of pi : (Y, d) → (Yi, di).

Proposition 1.18.
⊗n

i=1 BYi ⊆ BY . Moreover, if Yi’s are all separable, then
⊗n

i=1 BYi = BY .

Proof. By Proposition 1.9, we have
⊗n

i=1 BYi
= σ

({
π−1
i (Vi) : Vi ∈ Tdi and i = 1, 2, · · · , n

})
, where Vi is

open in Yi. Since pi is continuous by Lemma 1.6, π−1
i (Vi) is open in Y . Hence,

⊗n
i=1 BYi

⊆ BY by Lemma 1.1.
Moreover, suppose Yi’s are all separable. Then, they are all second countable by Proposition 1.17, so that
there exist countable bases Bi ⊆ Tdi , i.e., countable collection of open balls Bi, such that every Vi ∈ Tdi

is a union of members of Bi. Here, the union is actually a countable union since Bi is countable, which
yields BYi

= σ(Bi) (i = 1, 2, · · · , n). Since Y is also second countable by Lemma 1.5 and Proposition 1.17,
its base B is a countable collection of open balls B. Since B =

∏n
i=1Bi by Lemma 1.4, we therefore obtain

BY = σ
{∏n

i=1Bi : Bi ∈ Bi

}
and hence by Proposition 1.9,

⊗n
i=1 BYi

= BY .

Since R is separable, we obtain the following corollary for the Borel σ-algebra BRn
.
= σ(TRn), where TRn

is the standard topology on Rn induced by, e.g., the Euclidean metric d(x, y) =
√∑n

i=1(xi − yi)2.

Corollary 1.6. BRn =
⊗n

i=1 BR.

1.4.2 Borel σ-algebra BR on R

The Borel σ-algebra BR is the σ-algebra on R generated by the standard topology on R, i.e., the topology
induced by the distance metric d(x, y) = |x−y| (x, y ∈ R). As shown below, BR contains the sets of all open,
closed, half-open intervals, the sets of all open and closed rays, and by Proposition 1.13, all of (arbitrary
unions of) open sets, (arbitrary intersections of) closed sets, Gδ, Fσ sets, and Gδσ, Fσδ sets on R.

1In the most general situation, every countable product of separable topological spaces is also separable.
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Proposition 1.19. BR = σ(Ei) for Ei (i = 1, 2, 3, · · · , 8) shown below:

1. the open intervals: E1 = {(a, b) : a < b)},
2. the closed intervals: E2 = {[a, b] : a < b)},
3. the half-open intervals: E3 = {(a, b] : a < b}, or E4 = {[a, b) : a < b},
4. the open rays: E5 = {(a,∞) : a ∈ R}, or E6 = {(−∞, b) : b ∈ R},
5. the closed rays: E7 = {[a,∞) : a ∈ R}, or E8 = {(−∞, b] : b ∈ R}.

Proof. The elements Ei for i ̸= 3, 4 are open or closed, and the elements of E3 and E4 are Gδ-sets since
(a, b] =

⋂∞
n=1(a, b+ n−1) and [a, b) =

⋂∞
n=1(a− n−1, b). That is, the elements of Ei all belong to BR, so we

have Ei ⊂ BR and by Lemma 1.1, σ(Ei) ⊆ BR for each i = 1, 2, 3, · · · , 8. On the other hand, every open set
in R is a countable union of open intervals (a, b) and thereby, TR ⊆ σ(E1), where TR is the standard topology
on R, and by Lemma 1.1 again, BR ⊆ σ(E1), which proves BR = σ(E1). Moreover, for each i ̸= 1, every
open interval (a, b) ∈ E1 is a member of σ(Ei) as shown below:

(a, b) =



⋃∞
n=1 [a+ n−1, b− n−1] ∈ σ(E2),⋃∞
n=1 (a, b− n−1] ∈ σ(E3) and

⋃∞
n=1 [a+ n−1, b) ∈ σ(E4),

(a,∞) \ [b,∞) ∈ σ(E5) and (−∞, b) \ (−∞, a] ∈ σ(E6),(⋃∞
n=1 [a+ n−1,∞)

)
\ [b,∞) ∈ σ(E7) and

(⋃∞
n=1 (−∞, b− n−1]

)
\ (−∞, a] ∈ σ(E8),

where we have applied Proposition 1.1 to show (a, b) ∈ σ(Ei) for each i = 2, 3, 4, · · · , 8. Therefore, we have
E1 ⊆ σ(Ei) and by Lemma 1.1, BR = σ(E1) ⊆ σ(Ei); we conclude BR = σ(Ei) for each i = 2, 3, 4, · · · , 8.

The following corollary is a result of applying Propositions 1.6 and 1.19; it characterizes an (M,BR)-
measurable real-valued function f : X → R by open/closed rays on R.

Corollary 1.7. The followings are equivalent for a function f : X → R and a measurable space (X,M).

1. f is (M,BR)-measurable.

2. f−1((a,∞)) ∈ M for all a ∈ R.
3. f−1([a,∞)) ∈ M for all a ∈ R.
4. f−1((−∞, b)) ∈ M for all b ∈ R.
5. f−1((−∞, b ]) ∈ M for all b ∈ R.

Proposition 1.20. BR ⊂ BR.

Proof. Note that E5 ⊂ E5 ⊆ BR. Therefore, BR = σ(E5) ⊆ BR by Proposition 1.19 and Lemma 1.1, where
the relation is strict since, for example, {∞} ∈ BR but {∞} ̸∈ BR.

1.4.3 Borel σ-algebra on the Extended Real Numbers

The Borel σ-algebra BR on R can be extended to that on the extended real numbers R = [−∞,∞]. Here,
we adopt the conventions regarding ±∞:

x±∞ = ±∞ (x ∈ R), −∞−∞ = −∞, ∞+∞ = ∞,

x · (±∞) = ±∞ (x > 0), 0 · (±∞) = 0, x · (±∞) = ∓∞ (x < 0)
(1.8)

and define BR as BR
.
= σ

(
TR
)
, the σ-algebra on R generated by the topology TR. Here, TR is defined as the

induced topology on R by the metric d̄ : R× R → R given by

d̄(x, y)
.
=
∣∣ tan−1 x− tan−1 y

∣∣ for x, y ∈ R. (1.9)

For notational convenience, we also denote TΠ the standard topology on Π
.
= [−π/2, π/2], i.e., a topology

on Π induced by the distance metric d(x, y) = |x− y|.
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Lemma 1.7. The metric spaces (R, d̄) and (Π, d) are isometric.

Proof. For each x, y ∈ Π, d(x, y) = |x − y| =
∣∣ tan−1(tanx) − tan−1(tan y)

∣∣ = d̄(tanx, tan y), where tan(·),
with the convention tan(±π/2) = ±∞, is a one-to-one function from Π to R.

In the metric space (Π, d), every open ball is expressed as (a, b) (−π/2 ≤ a < b ≤ π/2), [−π/2, b) (b ∈ R),
or (a, π/2] (a ∈ R) and thus by Lemma 1.7, the open balls in (R, d̄) are of the forms (a, b), [−∞, b), and
(a,∞]. For notational convenience, we define ER as

ER
.
= {(a, b) : −∞ ≤ a < b ≤ ∞} ∪ {(a,∞], [−∞, b) : a, b ∈ R} = E1 ∪ E5 ∪ E6 ∪ E5 ∪ E6,

where E1, E5, and E6 are open intervals/rays defined on R in Proposition 1.19, and the extended open rays
E5, and E6 are given by

E5
.
=
{
(a,∞] : a ∈ R

}
, and E6

.
=
{
[−∞, b) : b ∈ R

}
.

Then, by combining this with Proposition 1.16, we obtain the following corollary.

Corollary 1.8. O ∈ TR iff for all x ∈ O, there exists Ix ∈ ER such that Ix ⊆ O. Moreover, every O ∈ TR is
a union of members of ER.

Denote ER the set of all closed intervals in R, i.e., ER
.
=
{
[a, b] : −∞ ≤ a ≤ b ≤ ∞

}
. Then, by

Proposition 1.13, and Corollary 1.8, BR contains arbitrary unions of members of ER (i.e., open sets), arbitrary

intersections of members of ER (i.e., closed sets), and all of their corresponding Gδ, Fσ, Gδσ and Fσδ sets.
It also contains every member of BR. Moreover, the next proposition states the useful form of BR expressed
in terms of BR.

Proposition 1.21. BR =
{
E ⊆ R : E ∩ R ∈ BR

}
.

Proof. Let B
.
=
{
E ⊆ R : E∩R ∈ BR

}
. Then, B is a σ-algebra, since so is BR. Obviously, for {Ei}∞i=1 ⊂ BR,

we have Ei∩R ∈ BR for each i ∈ N and thereby,
(⋃∞

i=1Ei

)
∩R =

⋃∞
i=1(Ei∩R) ∈ BR, implying

⋃∞
i=1Ei ∈ B;

for E ∈ BR, we have E ∩ R ∈ BR and thus R ∩ Ec = R ∩ (Ec ∪ {−∞,∞}) = R \ (E ∩ R) ∈ BR by R ∈ BR
and Proposition 1.1. Hence, B is a σ-algebra.

Now, suppose E ∈ B. Then, since {±∞}, {−∞,∞} ∈ BR (∵ {±∞} ∈ ER), we have

E = E ∩ R = (E ∩ {−∞,∞})︸ ︷︷ ︸
={±∞} or {−∞,∞}

∪ (E ∩ R)︸ ︷︷ ︸
∈BR⊂BR

∈ BR,

implying B ⊆ BR. To prove the converse, let E ∈ TR. Then, by Corollary 1.8, there exists
{
Ix ∈ ER

}
x∈E

such that E =
⋃

x∈E Ix and thus, E ∩ R =
⋃

x∈E Ix ∩ R, where each Ix ∩ R is an open ball in R. Hence,

E ∩R ∈ TR and hence E ∩R ∈ BR (= σ(TR)). That is, TR ⊆ B. This implies BR ⊆ B by Lemma 1.1, hence

we conclude BR = B.

Proposition 1.22. BR = {E ∩ R : E ∈ BR}.

Proof. Let B
.
= {E ∩ R : E ∈ BR}. Then, since we have E ∩ R ∈ BR for each E ∈ BR by Proposition 1.21,

we have B ⊆ BR. Moreover, BR = {E ∩ R : E ∈ BR} trivially holds (∵ E ∩ R = E for any E ∈ BR), hence
by BR ⊂ BR (Proposition 1.20), we have BR ⊆ B. Therefore, we conclude BR = B.

The next proposition regarding BR is parallel to Proposition 1.19 regarding BR.

Proposition 1.23. BR = σ(ER) = σ(Ei) for i = 5, 6.

Proof. Every member of ER and Ei for i = 5, 6 is an open set, i.e., belongs to the topology TR. Hence, since

BR = σ(TR), we have ER ⊆ BR and Ei ⊆ BR and by Lemma 1.1, σ(ER) ⊆ BR and σ(Ei) ⊆ BR for i = 5, 6,
respectively. On the other hand, every O ∈ TR is a countable union of members of ER by Corollary 1.8
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and thereby, TR ⊆ σ(ER), and by Lemma 1.1 again, BR ⊆ σ(ER), which proves BR = σ(ER). Moreover, for
i = 5, 6, every member of ER is a member of σ(Ej) as shown below:

[−∞, b) =
⋃

n∈N [−∞, b− n−1] =
⋃

n∈N (b− n−1,∞]c ∈ σ(E5)

(a,∞] =
⋃

n∈N [a+ n−1,∞] =
⋃

n∈N [−∞, a+ n−1)c ∈ σ(E6)

(a, b) = [−∞, b) ∩ (a,∞] =


(⋃

n∈N (b− n−1,∞]c
)
∩ (a,∞] ∈ σ(E5),

[−∞, b) ∩
(⋃

n∈N [−∞, a+ n−1)c
)
∈ σ(E6),

where we have applied Proposition 1.1. Therefore, we have ER ⊆ σ(Ei) and thus BR = σ(ER) ⊆ σ(Ei) by
Lemma 1.1; we conclude BR = σ(Ei) for each i = 5, 6.

1.5 Extended-real-valued Measurable Functions

Now, we consider extended-real-valued functions f : X → R and the measurable spaces (X,M) and (R,BR).
From now on, we say that an extended-real-valued function f is M-measurable iff it is (M,BR)-measurable,
or just measurable if M is understood so that there is no confusion.

The following corollary is parallel to Corollary 1.7 and is a result of applying Propositions 1.6 and 1.23.

Corollary 1.9. f is M-measurable iff f−1((a,∞]) ∈ M for all a ∈ R iff f−1([−∞, b)) ∈ M for all b ∈ R.

Lemma 1.8. Let f : X → R and Y = f−1(R). Then, f is M-measurable iff

1. f−1({−∞}) ∈ M and f−1({∞}) ∈ M;

2. f is M-measurable on Y , i.e., f−1(E) ∩ Y ∈ M for every E ∈ BR.

Proof. (=⇒) Suppose f is M-measurable. Then, since R ∈ BR by Proposition 1.21, we have f−1(R) ∈ M.
Therefore, for any E ∈ BR, we have f−1(E) ∩ Y ∈ M by Proposition 1.1. That is, f is M-measurable on Y .
Moreover, we have f−1({−∞}) ∈ M and f−1({∞}) ∈ M as follows:

f−1({−∞}) = f−1
(⋂∞

n=1 [−∞,−n)
)
=
⋂∞

n=1 f
−1
(
[−∞,−n)

)
∈ M,

f−1({∞}) = f−1
(⋂∞

n=1 (n,∞]
)
=
⋂∞

n=1 f
−1
(
(n,∞]

)
∈ M,

where we have applied Lemma 1.2, Corollary 1.9 and Proposition 1.1.
(⇐=) Suppose f is M-measurable on Y , f−1({−∞}) ∈ M, and f−1({∞}) ∈ M. We know that

f−1
(
(a,∞]

)
= f−1

((
(a,∞] ∩ R

)
∪ {∞}

)
=
(
f−1

(
(a,∞]

)
∩ Y

)
∪ f−1({∞})

for any a ∈ R by Lemma 1.2. Here, since f is measurable on Y , we have f−1
(
(a,∞]

)
∩ Y ∈ M and hence

f−1
(
(a,∞]

)
∈ M for any a ∈ R. Therefore, f is M-measurable by Corollary 1.9.

Proposition 1.24. f is M-measurable iff f−1({∞}) ∈ M, f−1({−∞}) ∈ M, and

f−1(E) ∈ M for each E ∈ BR.

Proof. Let Y
.
= f−1(R). Then, if f−1(E) ∩ Y ∈ M for all E ∈ BR, then we have by Lemma 1.2

f−1(E ∩ R) ∈ M for all E ∈ BR, (1.10)

which implies f−1(F ) ∈ M for all F ∈ BR by Proposition 1.22. Conversely, if f−1(F ) ∈ M for all F ∈ BR,
then f−1(E∩R) ∈ M for all E ∈ BR by Proposition 1.21 (or Proposition 1.22), which implies f−1(E)∩Y ∈ M

for all E ∈ BR by Lemma 1.2. Therefore, the proof is completed by applying Lemma 1.8 above.

In what follows, we provide the properties of R-valued measurable functions.
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Lemma 1.9. If X = A∪B where A,B ∈ M, then a function f : X → R is M-measurable iff f is measurable
on A and B.

Proof. Suppose f is M-measurable. Then, f−1(E) ∈ M for each E ∈ BR and hence, f−1(E) ∩ A ∈ M and
f−1(E) ∩B ∈ M by Proposition 1.1. Conversely, if f is M-measurable on A and B, we have

f−1(E) = f−1(E) ∩ (A ∪B) = (f−1(E) ∩A) ∪ (f−1(E) ∩B) ∈ M,

for each E ∈ BR, hence f is M-measurable.

Proposition 1.25. Suppose f, g : X → R are M-measurable. Then,

1. fg is M-measurable (with 0 · (±∞) = 0).

2. If there does not exist x ∈ X such that f(x) = −g(x) = ±∞, then f + g is M-measurable. Generally,
if h is defined for some a ∈ R as h(x) = a if f(x) = −g(x) = ±∞ and h(x) = f(x) + g(x) otherwise,
then h is M-measurable.

Proof. Let F : X → R2, ϕ, ψ : R2 → R be defined as F (x)
.
= (f(x), g(x)), ϕ(u, v)

.
= u+ v and ψ(u, v)

.
= uv,

with the convention 0 · (±∞) = 0. Since R is separable, we have BR2 = BR ⊗ BR by Proposition 1.18.
Hence, F is (M,BR2)-measurable by Proposition 1.10. Moreover, by continuity and Proposition 1.14, ψ is

(BR2 ,BR)-measurable. For ϕ, let A = {(−∞,∞), (∞,−∞)} ⊂ R2 and B = X \A. Then, by Proposition 1.1,
since

(−∞,∞) =
⋂

n,m∈N
[−∞, n)× (m,∞] ∈ BR2 and (∞,−∞) =

⋂
n,m∈N

(n,∞]× [−∞,m) ∈ BR2 ,

we have A = {(−∞,∞)} ∪ {(∞,−∞)} ∈ BR2 and B ∈ BR2 . Hence, for any E ∈ BR, ϕ
−1(E) ∩ A is equal

to ∅, {(∞,−∞)}, {(−∞,∞)}, or A, all of which belong to BR2 . Moreover, by continuity of ϕ over B and
Proposition 1.14,

ϕ−1(E) ∩B = ϕ|−1
B (E) ∈ BR2

for each E ∈ BR. Therefore, ϕ is BR2-measurable by Lemma 1.9. By the measurability of ψ, ϕ, and F , we
conclude that fg = ψ ◦ F and h = ϕ ◦ F are M-measurable.

Proposition 1.26. Let {fi : X → R}∞i=1 be a sequence of R-valued M-measurable functions. Then,

g1(x) = sup
i∈N

fi(x) g3(x) = lim sup
i→∞

fi(x)

g2(x) = inf
i∈N

fi(x) g4(x) = lim inf
i→∞

fi(x)

are all M-measurable. If f(x) = limi→∞ fi(x) exists for every x ∈ X, then f is M-measurable.

Proof. For any a ∈ R, we have

g−1
1 ((a,∞])=

{
x : sup

i∈N
fi(x) > a

}
=
{
x : fi(x) > a for some i ∈ N

}
=

∞⋃
i=1

{
x : fi(x) > a

}
=

∞⋃
i=1

f−1
i ((a,∞])

g−1
2 ([−∞, a))=

{
x : inf

i∈N
fi(x) < a

}
=
{
x : fi(x) < a for some i ∈ N

}
=

∞⋃
i=1

{
x : fi(x) < a

}
=

∞⋃
i=1

f−1
i ([−∞, a));

As fi is M-measurable, f−1
i ((a,∞]), f−1

i ([−∞, a)) ∈ M for all i ∈ N, hence we have g−1
1 ((a,∞]) ∈ M and

g−1
2 ([−∞, a)) ∈ M for each a ∈ R. Therefore, by Corollary 1.9, g1 and g2 are M-measurable. Likewise,
hj defined as hj(x)

.
= supi>j fi(x) is M-measurable and hence, g3 = infj∈N

(
supi>j fi

)
= infj∈N hj is

M-measurable. One can also prove in a similar way that g4 is M-measurable. Finally, if f exists, then
f = g3 = g4, so f is M-measurable.

Corollary 1.10. If f, g : X → R are M-measurable, then so are max(f, g) and min(f, g).
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In this textbook, we identify a function f : X → Y for Y ⊆ R as

a function f : X → R whose image is a subset of Y (i.e., Im(f) ⊆ Y ). (1.11)

This clarification defines the inverse map f−1 : P(R) → P(X), with the property that f−1(E) = ∅ for
any E ∈ P(Y c). This property on Y c ensures that checking the measurability on f−1(Y ) is enough for
measurability on X as shown below.

Proposition 1.27. A function f : X → Y for Y ∈ BR is M-measurable iff it is M-measurable on f−1(Y ),
i.e., iff f−1(E ∩ Y ) ∈ M for all E ∈ BR.

Proof. Apply Lemma 1.9 with A = f−1(Y ) ∈ M and B = f−1(Y c) = ∅ ∈ M; note that f−1(E) ∩ A =
f−1(E ∩ Y ) ∈ M for all E ⊆ R.

Now, any M-measurable function f : X → R can be decomposed as two extended positive real-valued
functions f+, f− : X → Y with Y = [0,∞] as

f+(x)
.
= max(f(x), 0), f−(x)

.
= max(−f(x), 0) (1.12)

which are M-measurable by Corollary 1.10 and satisfy f = f+ − f−. Since at least one of f+(x) and f−(x)
is finite for each x ∈ X, f is M-measurable iff so are f+ and f− by Proposition 1.25. Throughout the
textbook, we denote

L+ ≡ L+(X,M)
.
= the space of all M-measurable functions f : X → [0,∞]. (1.13)

Then, the above statement can be rephrased as follows.

Corollary 1.11. f : X → R is M-measurable iff f+, f− ∈ L+.

1.5.1 Approximation by Simple Functions

Now, we show that for any measurable function f : X → R on a measurable space (X,M), there exists a
monotonic sequence of simple functions {ϕn} which pointwisely (and uniformly when f is bounded) converges
to f . To define a simple function, we introduce the indicator function 1E : X → {0, 1} for a subset E ⊆ X:

1E(x)
.
=

{
1 if x ∈ E,

0 if x ̸∈ E.

Lemma 1.10. 1E is M-measurable iff E ∈ M.

Proof. If E ∈ M, then we have 1−1
E {1} = E, 1−1

E {0} = Ec, 1−1
E {0, 1} = X, and 1−1

E (∅) = ∅, all of which
belong to the σ-algebra M. Conversely, if 1E is M-measurable, then E = 1−1

E {1} ∈ M.

Proposition 1.28. If f : X → R is M-measurable on A ∈ M, then f · 1A is M-measurable.

Proof. Letting fA = f · 1A and noting that fA = f over A and fA = 0 over Ac, we have for any E ∈ BR
such that 0 ̸∈ E,f

−1
A (E) ∩A = f−1(E) ∩A ∈ M (by the M-measurability of f on A),

f−1
A (E) ∩Ac = ∅ ∈ M.

Moreover, it is obvious that f−1
A {0} = Ac ∪ {x ∈ A : f(x) = 0}. Hence,f

−1
A {0} ∩A = {x ∈ A : f(x) = 0} = f−1{0} ∩A ∈ M,

f−1
A {0} ∩Ac = Ac ∈ M.
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For a general E ∈ BR, since f
−1
A (E) = f−1

A (E \ {0}) ∪ f−1
E {0}, we havef

−1
A (E) ∩A =

(
f−1
A (E \ {0}) ∩A

)
∪
(
f−1
A {0} ∩A

)
∈ M,

f−1
A (E) ∩Ac =

(
f−1
A (E \ {0}) ∩Ac

)
∪
(
f−1
A {0} ∩Ac

)
∈ M.

Therefore, fA is M-measurable by Lemma 1.9 with B = Ac.

A real-valued function ϕ : X → R is said to be simple, or a simple function, if it is a linear combination
of indicator functions of sets in M, that is, if ϕ(x) =

∑n
i=1 aj ·1Ei(x) for some aj ∈ R and Ei ∈ M such that

X =
⋃n

i=1Ei. The simple functions have some nice properties as shown below.

Proposition 1.29. If f1, f2 : X → R are simple, then so are f1 + f2 and f1f2. Moreover, f : X → R is
simple iff f is measurable and the range of f is a finite subset of R.

Proof. f1 + f2 is simple by the definition of a simple function. f1f2 is also simple by the definition and the
fact that 1E · 1F = 1E∩F for any E,F ∈ X. Moreover, if f is simple, then it is measurable by Lemma 1.10
and the recursive applications of Proposition 1.25; f has a finite range in R since f(x) =

∑n
i=1 ai1Ei

(x) is a
linear combination of 0’s and 1’s, uniformly having at most 2n values. Conversely, suppose f is measurable
and range(f) = {b1, b2, · · · , bn}. Then, for each i, j ∈ {1, 2, · · · , n}, Ei

.
= f−1{bi} ∈ M and by the definition

of a function, Ei ∩ Ej = ∅. In summary, f can be represented as

f =

n∑
i=1

bi · 1Ei
, where Ei = f−1{bi} and range(f) = {b1, b2, · · · , bn}. (1.14)

Therefore, f is simple and the proof is completed.

Here, Proposition 1.29 ensures that every simple function f can be represented by (1.14) called the
standard representation of f , with {Ei}ni=1 disjoint. Next, we prove that any extended real-valued measurable
function can be approximated by a simple function represented by (1.14) for some Ei’s, bj ’s and n.

Theorem 1.1. If f : X → [0,∞] is measurable on a measurable space (X,M), then there exists a sequence
{ϕn} of simple functions such that 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f and

ϕn → f as n→ ∞, pointwisely on X, and uniformly on any subset on which f is bounded. (1.15)

Proof. Consider the functions ϕn : X → [0,∞] of the form:

ϕ1(x) =

{
0 if f(x) ∈ [0, 1),

1 if f(x) ≥ 1,
ϕ2(x) =


0 if f(x) ∈ [0, 12 ),

1
2 if f(x) ∈ [ 12 , 1),

1 if f(x) ∈ [1, 32 ),
3
2 if f(x) ∈ [ 32 , 2),

2 if f(x) ≥ 2,

ϕ3(x) =



0 if f(x) ∈ [0, 14 ),
1
4 if f(x) ∈ [ 14 ,

1
2 ),

1
2 if x ∈ [ 12 ,

3
4 ),

3
4 if x ∈ [ 34 , 1),

1 if f(x) ∈ [1, 54 ),
5
4 if f(x) ∈ [ 54 ,

3
2 ),

3
2 if x ∈ [ 32 ,

7
4 ),

7
4 if x ∈ [ 74 , 2),

2 if f(x) ∈ [2, 94 ),
9
4 if f(x) ∈ [ 94 ,

5
2 ),

5
2 if f(x) ∈ [ 52 ,

11
4 ), 11

4 if f(x) ∈ [ 114 , 3),

3 if f(x) ∈ [3, 134 ), 13
4 if f(x) ∈ [ 134 ,

7
2 ),

7
2 if f(x) ∈ [ 72 ,

15
4 ), 15

4 if f(x) ∈ [ 154 , 4),

4 if f(x) ≥ 4....

That is, ϕn+1(x) =

{
(k − 1) · 2−n if f(x) ∈ [(k − 1) · 2−n, k · 2−n) for k = 1, 2, 3, · · · , 22n,

2n if f(x) ≥ 2n.
Then, by the

above formulas, we can clearly see that ϕn ≤ ϕn+1 and 0 ≤ f − ϕn+1 for all n. Moreover, for any x ∈ X
satisfying f(x) ≤ 2n and any n, we have f(x) ∈ [(k − 1) · 2−n, k · 2−n) for some k ∈ {1, 2, 3, · · · , 22n}, and
thereby,

0 ≤ f(x)− ϕn+1(x) = f(x)− (k − 1) · 2−n ≤ 2−n. (1.16)
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Therefore, ϕn(x) → f(x) as n → ∞ for any x, pointwise convergence on X. Moreover, for any bounded
region E ⊆ {x ∈ X : f(x) ≤ c} (c > 0), one has (1.16) uniformly in x ∈ E if 2n ≥ c and thus the convergence
is uniform on any subset of X on which f is bounded. Finally, the proof is completed as each ϕn is simple
and can be represented as

ϕn+1 =

22n∑
k=1

(k − 1)·2−n · 1En,k
+ 2n ·1Fn , where En,k = f−1

(
[(k − 1)·2−n, k ·2−n)

)
, Fn = f−1

(
[2n,∞]

)
.

Corollary 1.12. If f : X → R is measurable, then there exists a sequence {ϕn} of simple functions such
that 0 ≤ |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |f | and (1.15) holds.

Proof. Since f can be decomposed as f = f+ − f−, where f+ and f− given by (1.12) are measurable as
discussed above, By Theorem 1.1, there are the sequences {ϕ+n } and {ϕ−n } of simple functions such that
0 ≤ ϕ+1 ≤ ϕ+2 ≤ · · · ≤ f+ and 0 ≤ ϕ−1 ≤ ϕ−2 ≤ · · · ≤ f−, both of which implies, when ϕn

.
= ϕ+n − ϕ−n , that

0 ≤ |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |f |. Here, ϕn’s are also simple by Proposition 1.29 and |ϕn| = ϕ+ + ϕ−; also note
that f = f+ + f−. Finally, the convergence (1.15) can be also established by Theorem 1.1 as ϕ+n → f+ and
ϕ−n → f− and hence,

ϕn = ϕ+n − ϕ−n −→ f+ − f− = f as n→ ∞,

pointwisely on X and uniformly on any subset of X on which f is bounded.



Chapter 2

Measures and Integrations

In this chapter, (X,M) denotes a measurable space and (X,M, µ) a measure space (see the definition below).
We say that a sequence {Ei}∞i=1 in M is disjoint if Ei ∩ Ej = ∅ for all i, j ∈ N.

2.1 Measures

A measure on M (or on (X,M) or simply on X if M is understood) is a function µ : M → [0,∞] such that

1. µ(∅) = 0,

2. (countable additivity) if {Ei}∞i=1 ⊆ M is disjoint, then µ
(⋃∞

i=1Ei

)
=
∑∞

i=1 µ(Ei).

The space (X,M, µ) is called a measure space. The followings are some types and examples of the measures.

• A measure µ is said to be finite if µ(X) < ∞. In this case, µ(E) < ∞ for every E ∈ M since
0 ≤ µ(X) = µ(E) + µ(Ec) <∞ and µ(E), µ(Ec) ≥ 0. Some examples are as follows.

– A probability measure P : M → [0, 1], a measure P with the property P(X) = 1.

– A dirac measure δx0
: M → {0, 1} defined on a σ-algebra M such that {x0} ∈ M as

δx0
(E)

.
= 1E∩{x0} for E ∈ M.

Here, note that a dirac measure is a probability measure.

– A finite Borel measure µ : M → [0,∞) on R, with M = BR and µ(R) < ∞. An explicit formula
w.r.t. an interval (a, b] can be given by µ((a, b]) = F (b) − F (a) for the associated distribution
function F (x)

.
= µ

(
(−∞, x]

)
. Note that if µ(R) = 1, then µ is a probability measure on R and F

is the cumulative distribution function in probability theory (see Section 3.2 for general cases).

• A measure µ is said to be σ-finite if there exists {Ei}∞i=1 ⊆ M such that

X =

∞⋃
i=1

Ei and µ(Ei) <∞ for all i ∈ N.

A finite measure is σ-finite, but not vice versa. Most measures arising in practice are σ-finite including
Lebesgue-Stieltjes measures µ̄F in Section 3.2 and the Lebesque measure m.

The fundamental properties of measures can be summarized in the following theorem.

Theorem 2.1. Let (X,M, µ) be a measure space.

a. (Monotonicity and Subtractivity) for any E,F ∈ M, E ⊆ F =⇒

{
µ(E) ≤ µ(F )

µ(F \ E) = µ(F )− µ(E)

21



22 CHAPTER 2. MEASURES AND INTEGRATIONS

Moreover, the followings are true for any sequence {Ei}∞i=1 ⊆ M.

b. (Subadditivity) µ
(⋃∞

i=1Ei

)
≤
∑∞

i=1 µ(Ei).

c. (Continuity from below) If E1 ⊆ E2 ⊆ E3 ⊆ · · · , then µ
(⋃∞

i=1Ei

)
= limi→∞ µ(Ei).

d. (Continuity from above) If E1 ⊇ E2 ⊇ E3 ⊇ · · · and µ(E1) <∞, then µ
(⋂∞

i=1Ei

)
= limi→∞ µ(Ei).

e. (Borel-Cantalli Lemma) If
∑∞

i=1 µ(Ei) <∞, then µ
(
lim supi→∞Ei

)
= µ

(⋂∞
i=1

⋃∞
j=iEj

)
= 0.

Proof. (Monotonicity and Subtractivity) If E,F ∈ M and E ⊆ F , then

µ(F ) = µ(E ∪ (F \ E)) = µ(E) + µ(F \ E) (2.1)

≥ µ(E).

(Subadditivity and Continuity from below) Let F1 = E1 and Fk = Ek \
(⋃k−1

i=1 Ei

)
for k ≥ 2.

Then, {Fk}∞k=1 ⊆ M by Proposition 1.1, is disjoint, and satisfies
⋃∞

i=1Ei =
⋃∞

i=1 Fi. Therefore, by (a)
monotonicity,

µ

( ∞⋃
i=1

Ei

)
= µ

( ∞⋃
i=1

Fi

)
=

∞∑
i=1

µ(Fi) ≤
∞∑
i=1

µ(Ei).

Moreover, let E0
.
= ∅. Then, if E1 ⊆ E2 ⊆ E3 ⊆ · · · , then Fk = Ek \ Ek−1 for all k. Hence,

µ

( ∞⋃
i=1

Ei

)
= µ

( ∞⋃
i=1

Ei \ Ei−1

)
=

∞∑
i=1

µ(Ei \ Ei−1) = lim
n→∞

n∑
i=1

µ(Ei \ Ei−1) = lim
n→∞

µ(En).

(Continuity from above) Let Fi
.
= E1 \ Ei for i ∈ N. Then, Fi+1 = E1 ∩ Ec

i+1 ⊆ E1 ∩ Ec
i = Fi by

Ei+1 ⊇ Ei for all i and hence, by (c) continuity from below,

µ

(
E1 \

( ∞⋂
i=1

Ei

))
= µ

( ∞⋃
i=1

Fi

)
= lim

i→∞
µ(Fi), (2.2)

where we have substituted E1 \
(⋂∞

i=1Ei

)
= E1 ∩

(⋃∞
i=1E

c
i

)
=
⋃∞

i=1E1 ∩Ec
i =

⋃∞
i=1E1 \Ei =

⋃∞
i=1 Fi for

the first equality. Moreover, since
⋂∞

i=1Ei ⊆ E1 and µ(E1) = µ(Ei ∪ (E1 \ Ei)) = µ(Ei) + µ(Fi),

µ(E1) = µ

( ∞⋂
i=1

Ei

)
+ µ

(
E1 \

( ∞⋂
i=1

Ei

))
(by (2.1) with E =

⋂∞
i=1Ei and F = E1)

= µ

( ∞⋂
i=1

Ei

)
+ lim

j→∞
µ(Fj) (by (2.2))

= µ

( ∞⋂
i=1

Ei

)
+ µ(E1)− lim

j→∞
µ(Ei) (by µ(E1) = µ(Ei) + µ(Fj)).

Finally, since µ(E1) <∞, subtracting it from the above equation yields the desired result.

(Borel-Cantalli Lemma) Let Sn =
∑n

i=1 µ(Ei) and S = limn→∞ Sn. Then, the series Sn converges to
S as n→ ∞ and thus we have for each k ∈ N, limn→∞

∑n
i=k µ(Ei) = limn→∞

(
Sn − Sk

)
= S − Sk. Hence,

lim
k→∞

∞∑
i=k

µ(Ei) = S − S = 0. (2.3)

Since Fk
.
=
⋃∞

i=k Ei satisfies F1 ⊇ F2 ⊇ F3 ⊇ · · · and µ(F1) ≤
∑n

i=1 µ(Ei) < ∞ by (b) subadditivity and
assumption, we finally obtain by (d) continuity from above, (b) subadditivity, and (2.3) that

µ

(
lim sup
i→∞

Ei

)
= µ

( ∞⋂
k=1

∞⋃
i=k

Ei

)
= µ

( ∞⋂
k=1

Fk

)
= lim

k→∞
µ(Fk) ≤ lim

k→∞

∞∑
i=k

µ(Ei) = 0,

which completes the proof.



2.2. COMPLETENESS 23

Corollary 2.1. µ
(⋃∞

i=1Ei

)
= limn→∞ µ

(⋃n
i=1Ei

)
for any {Ei}∞i=1 ⊆ M.

Proof. Applying Theorem 2.1c to Fn
.
=
⋃n

i=1Ei, µ
(⋃∞

n=1 Fn

)
= limn→∞ µ(Fn).

2.2 Completeness

A set E ∈ M is said to be of measure zero iff µ(E) = 0. From subadditivity in Theorem 2.1, we obtain the
following corollary.

Corollary 2.2. Any countable union of measure zero sets is also of measure zero.

Proof. 0 ≤ µ
(⋃∞

i=1Ei

)
≤
∑∞

i=1 µ(Ei) = 0 for any {Ei : µ(Ei) = 0}∞i=1.

Note that for a measure zero set E ∈ M and F ⊂ E, we have µ(F ) = 0 by monotonicity provided
that F ∈ M. A measure whose domain includes all subsets of measure zero sets is called complete, and the
associated measure space is called a complete measure space. Completeness can obviates annoying technical
points and as expected and shown below can be made by enlarging the domain of the target measure, the
σ-algebra (see the Theorem below and for an extension from outer measures, see Section 3.1).

Theorem 2.2. Let M
.
= {E∪F : E ∈ M and F ⊆ N for some measure zero set N ∈ M} (here, M contains

all subsets of measure zero sets in M — consider E = ∅). Then,

1. M is a σ-algebra;

2. µ̄ : M → [0,∞] given by

µ̄(E ∪ F ) .= µ(E) for E and F in the definition of M (2.4)

is the unique extension µ̄ of µ to a complete measure on M.

Proof. Let N
.
= {N ∈ M : µ(N) = 0} ⊆ M be the family of measure zero sets. Since M and N are closed

under countable unions by the definition of a σ-algebra and Corollary 2.2, respectively, so is M as shown
below:

{Ei}∞i=1 ⊂ M and {Fi : Fi ⊆ Ni for some Ni ∈ N}∞i=1 =⇒
∞⋃
i=1

(Ei ∪ Fi) =
(⋃∞

i=1Ei

)
∪
(⋃∞

i=1Fi

)
,

where
⋃∞

i=1Ei ∈ M and
⋃∞

i=1 Fi ⊆
⋃∞

i=1Ni ∈ N. To show that M is closed under taking complements,

suppose E ∪ F ∈ M, where E ∈ M and F ⊆ N ∈ N. Without loss of generality, assume that E ∩ N = ∅,
hence E ∩F = ∅ by F ⊆ N (otherwise, replace F and N by F \E and N \E, both disjoint from E). Then,

E ∪ F = (E ∪ F ) ∩ (N ∪N c)︸ ︷︷ ︸
X

= (E ∩N)︸ ︷︷ ︸
∅

∪(E ∩N c) ∪ (F ∩N) ∪ (F ∩N c)︸ ︷︷ ︸
∅ by F⊆N

= (E ∩N c) ∪ (F ∩N)

=
[
(E ∩N c) ∪ (E ∩ F )︸ ︷︷ ︸

∅

]
∪
[
(F ∩N) ∪ (N c ∩N)︸ ︷︷ ︸

∅

]
=
[
E ∩ (N c ∪ F )

]
∪
[
(N c ∪ F ) ∩N

]
= (E ∪N) ∩ (N c ∪ F ),

which implies (E∪F )c = (E∪N)c∩(N \F ). But, (E∪N)c ∈ M and N \F ⊂ N ∈ N, implying (E∪F )c ∈ M.
Therefore, M is a σ-algebra.

Next, for E
.
= E ∪ F ∈ M for E ∈ M and F ⊆ N ∈ N as above, we show that µ̄(E)

.
= µ(E) is a measure

on M. First, µ̄ is well-defined, since if E = E1 ∪ F1 = E2 ∪ F2 for some E1, E2 ∈ M, F1 ⊆ N1 ∈ N and
F2 ⊆ N2 ∈ N, thenE1 ⊆ E1 ∪ F1 ⊆ E2 ∪N2 =⇒ µ(E1) ≤ µ(E2) + µ(N2) = µ(E2)

E2 ⊆ E2 ∪ F2 ⊆ E1 ∪N1 =⇒ µ(E2) ≤ µ(E1) + µ(N1) = µ(E1),

meaning that µ̄(E) = µ(E1) = µ(E2). Moreover,
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1. µ̄(∅) = µ̄(∅ ∪∅) = µ(∅) = 0;

2. for any {Ei}∞i=1 ⊂ M disjoint, there exist {Ei}∞i=1 ⊂ M and {Fi : Fi ⊆ Ni ∈ N}∞i=1 ⊂ M such that
Ei = Ei ∪Fi. Since Ei ⊆ Ei, Ei ⊆ Ei, and Ei ∩Ej = ∅, Ei ∩Ej ⊆ Ei ∩Ej = ∅, that is, Ei ∩Ej = ∅
and thus {Ei}∞i=1 is also disjoint. Since

⋃∞
i=1 Fi ⊆

⋃∞
i=1Ni ∈ N, we have

µ̄
(⋃∞

i=1Ei

)
= µ̄

((⋃∞
i=1Ei

)
∪
(⋃∞

i=1Fi

))
= µ

(⋃∞
i=1Ei

)
=

∞∑
j=1

µ(Ei) =

∞∑
j=1

µ̄(Ei).

To show the completeness of µ̄, suppose A ⊆ X and there is E ∈ M such that A ⊆ E and µ̄(E) = 0. Then, E
can be decomposed as E = E∪F for E ∈ M and F ⊆ N ∈ N; since A ⊆ E ⊆ E∪N ∈ M with µ(E∪N) = 0
as shown below:

0 ≤ µ(E ∪N) ≤ µ(E) + µ(N) = µ(E) = µ̄(E) = 0,

A is a subset of a measure zero set, i.e., A ∈ N, hence A = ∅ ∪A ∈ M, meaning that µ̄ is complete.

Finally, suppose λ : M → [0,∞] is another measure that extends µ, i.e., µ(E) = µ̄(E) = λ(E) for all
E ∈ M. Let E = E ∪ F ∈ M for E ∈ M and F ⊆ N ∈ N as above. Then, since E ⊆ E ⊆ E ∪N ∈ M,

µ(E) = λ(E) ≤ λ(E) ≤ λ(E ∪N) = µ(E ∪N) ≤ µ(E) + µ(N) = µ(E),

meaning that λ(E) = µ(E) (= µ(E)). This shows that µ̄ is the unique extension to a complete measure on
M, and the proof is completed.

The measure µ̄ in Theorem 2.2 is called the completion of µ, and M is called the completion of M with
respect to µ. We also simply call (X,M, µ̄) the completion of (X,M, µ). In what follows, we denote (X,M, µ̄)
the completion of a given measure space (X,M, µ) or just a given complete measure space.

We say that a property P about points x ∈ X is true µ-almost everywhere (a.e.) or P (x) is true for
µ-almost every x ∈ X iff there exists a measure zero set N ∈ M such that

NP
.
=
{
x ∈ X : P (x) is not true

}
⊆ N.

Note that the set NP falsifying the given property P does not necessarily belong to the σ-algebra M unless
the measure space (X,M, µ) is complete; since µ(N) = 0, as long as µ is complete, we have µ(NP ) = 0 by
both monotonicity and NP ∈ M, for any property P . We will also say a.e. or for almost every x ∈ X,
without the prefix “µ-” whenever no confusion exists. In fact, there is no difference between µ-a.e. and
µ̄-a.e. as shown below.

Proposition 2.1. A property P is true µ-a.e. iff it is true µ̄-a.e.

Proof. (=⇒) If P is true µ-a.e., then by definition, there exists N ∈ M such that NP ⊆ N and µ(N) = 0.
Since M ⊆ M and µ̄, the completion of µ, is the unique extension of µ to M by Theorem 2.2, we have
NP ⊆ N ∈ M and µ̄(N) = µ(N) = 0. Hence, P holds µ̄-a.e.

(⇐=) Suppose P holds µ̄-a.e. Then, NP ∈ M and µ̄(NP ) = 0 by completeness; by the definition of M
(see Theorem 2.2), there exists E ∈ M and F ⊆ N for a measure zero set N ∈ M s.t. NP = E ∪ F . By the
definition of µ̄, we have 0 = µ̄(NP ) = µ(E), hence it is obvious that NP ⊆ E ∪N and µ(E ∪N) = 0 by

µ(E ∪N) ≤ µ(E) + µ(N) = 0 + 0 = 0,

meaning that E ∪N is a µ-measure zero set, by which P is true µ-a.e.

In what follows, the fact that a statement is true a.e. means that it is true µ-a.e., µ̄-a.e., and both by
Proposition 2.1.

Proposition 2.2. For R-valued functions f and {fi}∞i=1, the followings hold iff the measure is complete:

1. if f is measurable and f = f̂ a.e., then f̂ is measurable;

2. if fi is measurable for all i ∈ N and fi → f a.e., then f is measurable.
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Proof. To prove sufficiency of the first part, suppose that (X,M, µ) is complete. For the proof of the first

part, let P (x)
.
= “f(x) is equal to f̂(x)”. Then, completeness ensures that NP ∈ M (∵ f = f̂ a.e.) and

thus N c
P ∈ M. Next, for any E ∈ M, since f is measurable and E ∩ N c

P ∈ M by Proposition 1.1, we have
f−1(E ∩N c

P ) ∈ M. Hence,

f̂−1(E) ∩N c
P = f̂−1(E ∩N c

P ) = f−1(E ∩N c
P ) ∈ M,

where we have used f = f̂ on N c
P and E ∩ N c

P ⊆ N c
P . On the other hand, f̂−1(E) ∩ NP is a subset of a

measure zero set NP and by completeness belongs to M. Therefore, f̂ is measurable by X = NP ∪N c
P and

Lemma 1.9.
To prove sufficiency of the second part, suppose that (X,M, µ) is complete, each fi is measurable and

fi → f a.e. Let f̂ be defined as f̂(x)
.
= lim supi→∞ fi(x). Then, f̂ is measurable by Proposition 1.26 and

f̂(x) = limi→∞ fi(x) for any x ∈ X for which the limit exists. Therefore, by uniqueness of the limit points

and fi → f a.e., we have f = f̂ a.e. and thus f is measurable by the first statement.
For necessity of the each part, suppose the first or second statement is true and but µ is not complete,

so that there exists a non-measurable set F ⊆ N for some N ∈ M such that µ(N) = 0. For the first case,

consider f = 1N and f̂ = 1F . Then, f = 1N is measurable by Lemma 1.10 and f = f̂ a.e. So, f̂ = 1F is
measurable by the first statement, hence F ∈ M again by Lemma 1.10. For the second case, consider fi = 0
and f = 1F , with which we have fi → f a.e. (except within the measure zero set N ⊇ F ), and hence f = 1F

is measurable by the second statement. Therefore, again by Lemma 1.10, F ∈ M. For both cases, we have
proved F ∈ M, implying that the measure space (X,M, µ) is complete.

If f is M-measurable, then it is M-measurable since M ⊆ M (see Corollary 1.1). The next proposition
states that the target function can be made measurable w.r.t. the measure space before completion by
redefining it on some measure zero sets.

Proposition 2.3. if f is M-measurable, then there exists a M-measurable function f̂ such that f = f̂ a.e.

Proof. Note that any E ∈ M can be represented as E = E ∪ F for E ∈ M and F ⊆ N for some N ∈ M

satisfying µ(N) = 0. First, consider a simple function f =
∑n

i=1 ai · 1Ei
for some sets Ei ∈ M such that

Ei = Ei ∪ Fi for some Ei ∈ M and Fi ⊆ Ni ∈ M with µ(Ni) = 0; let f̂ =
∑n

i=1 ai · 1Ei
. Then, f and f̂ are

M- and M-measurable by Proposition 1.29, respectively. Moreover, denoting N
.
=
⋃n

i=1Ni ∈ M, we have{
x ∈ X : f(x) ̸= f̂(x)

}
=
⋃n

i=1Ei \ Ei =
⋃n

i=1Fi \ Ei ⊆
⋃n

i=1 Fi ⊆ N,

where µ(N) = 0 by subadditivity: µ(N) ≤
∑n

i=1 µ(Ni) = 0. That is, f = f̂ a.e.

For the general case, by Corollary 1.12, there exists a sequence of M-measurable simple function {ϕn}
which converges pointwisely to f . As above, let ψn be a M-measurable simple function such that ϕn = ψn

except on a set Nn ∈ M with µ(Nn) = 0. Let N
.
=
⋃∞

n=1Nn and f̂ = lim supn→∞ ψn with slight abuse of

notations. Then, f̂ is M-measurable by Proposition 1.26 and by subadditivity µ(N) ≤
∑∞

n=1 µ(Nn) = 0, we
have µ(N) = 0. Moreover, outside the measure zero set N ,

f̂ = lim sup
n→∞

ψn = lim sup
n→∞

ϕn = lim
n→∞

ϕn = f,

meaning that f = f̂ a.e., which completes the proof.

By combining the two propositions above with the fact that the completion always exists by Theorem 2.2,
we obtain the following corollary.

Corollary 2.3. If fi is measurable for all i ∈ N and fi → f a.e., then there exists a measurable function f̂
s.t. fi → f̂ a.e. (i.e., f = f̂ a.e).

Proof. If fi is M-measurable, then it is M-measurable and hence, f is also M-measurable by Proposition 2.2.
Now, the proof is direct by Proposition 2.3.



26 CHAPTER 2. MEASURES AND INTEGRATIONS

2.3 Integration of Non-negative Functions

In this section, we define the integral of a measurable nonnegative extended-real-valued function. To do so,
recall that L+ is the space of all such functions f : X → [0,∞] and first consider the integral of a simple
function ϕ ∈ L+. With any of its representation ϕ =

∑n
i=1 ai · 1Ei

for a disjoint sequence {Ei ∈ M}ni=1 such
that X =

⋃n
i=1Ei and nonnegative ai’s, we define the integral of ϕ as∫

ϕ dµ
.
=

n∑
i=1

ai ·µ(Ei), (2.5)

with the convention that 0 · ∞ = 0 — see (1.8). The convention is essential as the measure inside the
summation and thus the integral may equal ∞.

For any A ∈ M, by Proposition 1.29, ϕ · 1A is also simple and thus measurable. Hence, we also define
the integral of ϕ over A ∈ M as ∫

A

ϕ dµ
.
=

∫
ϕ · 1A dµ =

n∑
i=1

ai ·µ(Ei ∩A),

where the formula on the right comes from the fact that

ϕ · 1A =

n∑
i=1

ai · 1Ei
· 1A

=

n∑
i=1

ai · 1Ei∩A + an+1 · 1Ac

for an+1
.
= 0 and the disjoint sets: Ei ∩A (j = 1, 2, · · · , n) and Ac, all measurable by Proposition 1.1. Note

that even if µ(Ac) = ∞, we have aN+1 · µ(Ac) = 0 · ∞ = 0 by the convention.
When there is no danger of confusion, we shall denote

∫
ϕdµ by

∫
ϕ; whenever necessary, we will also

denote it by
∫
ϕ(x) dµ(x) (some authors prefer to write

∫
ϕ(x) µ(dx)). In summary: for a simple function f ,∫

A

f dµ =

∫
A

f =

∫
A

f(x) dµ(x) =

∫
f · 1A dµ,

∫
=

∫
X

.

Proposition 2.4. The integral (2.5) with respect to a nonnegative simple function ϕ ∈ L+ is well-defined.
That is, if ϕ =

∑m
j=1 bj · 1Fj

is another representation with a disjoint sequence {Fj ∈ M}mj=1 such that

X =
⋃m

j=1 Fj and nonnegative bj’s, then∫
ϕ dµ =

m∑
j=1

bj ·µ(Fj) =
n∑

i=1

ai ·µ(Ei).

Proof. Note that 1 = 1X =
∑n

i=1 1Ei
=
∑m

j=1 1Fj
since both {Ei} and {Fj} are disjoint sequences such that

X =
⋃∞

i=1Ei =
⋃∞

j=1 Fj . Hence, by 1Ei
· 1Fj

= 1Ei∩Fj
, we have

ϕ =

n∑
i=1

(
ai1Ei

· 1
)
=

n∑
i=1

m∑
j=1

ai · 1Ei∩Fj
, ϕ =

m∑
j=1

(
bj1Fj

· 1
)
=

n∑
i=1

m∑
j=1

bj · 1Ei∩Fj
.

where {Ei∩Fj}i,j is disjoint. Now, whenever there is x ∈ Ei∩Fj , we have ai = ϕ(x) = bj , that is, whenever
Ei ∩ Fj ̸= ∅, we have ai = bj and thus ai · µ(Ei ∩ Fj) = bj · µ(Ei ∩ Fj). On the other hand, since µ(∅) = 0,
we also have ai · µ(Ei ∩ Fj) = bj · µ(Ei ∩ Fj) for the case Ei ∩ Fj = ∅. Hence,

n∑
i=1

ai ·µ(Ei)︸ ︷︷ ︸
=
∫
ϕ dµ

=

n∑
i=1

ai·µ
(
Ei∩

( m⋃
j=1

Fj

)
︸ ︷︷ ︸

=X

)
=

n∑
i=1

m∑
j=1

ai · µ(Ei ∩ Fj)︸ ︷︷ ︸
=bj ·µ(Ei∩Fj)

=

m∑
j=1

(
bj ·

n∑
i=1

µ(Ei ∩ Fj)︸ ︷︷ ︸
=µ
(
Fj∩
(⋃n

i=1 Ei

))
)

=

m∑
j=1

bjµ(Fj),

which completes the proof.
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Proposition 2.5. Let f, g ∈ L+ be simple.

1.

∫
c · f = c ·

∫
f for any c ∈ [0,∞),

2.

∫
(f + g) =

∫
f +

∫
g,

3. f ≤ g =⇒
∫
f ≤

∫
g,

4. The map A 7→
∫
A

f dµ is a measure on M.

Proof. Let f =
∑N

i=1 ai ·1Ei and g =
∑M

j=1 bj ·1Fj be their representations, with their nonnegative constants

ai’s and bj ’s, and the disjoint sequences {Ei}ni=1 and {Fj}mj=1 such that X =
⋃

i=1Ei =
⋃∞

j=1 Fj . For the
first part, since c ≥ 0 and {Ei}ni=1 is disjoint and covers X, it is obvious that∫

c · f dµ =

n∑
i=1

(c·ai) · µ(Ei) = c ·
n∑

i=1

ai · µ(Ei) = c ·
∫
f dµ.

by the definition (2.5) of an integral.
For the second and third parts, note that 1 = 1X =

∑n
i=1 1Ei =

∑m
j=1 1Fj

, and 1Ei
· 1Fj

= 1Ei∩Fj
, by

which we have

f =

n∑
i=1

(
ai · 1Ei

· 1
)
=

n∑
i=1

m∑
j=1

ai · 1Ei∩Fj
,

g =

m∑
j=1

(
bj · 1Fj

· 1
)
=

n∑
i=1

m∑
j=1

bj · 1Ei∩Fj
,

(2.6)

f + g =

n∑
i=1

m∑
j=1

(ai + bj) · 1Ei∩Fj
.

Since {Ei ∩ Fj}i,j is disjoint and ai + bj ≥ 0 for all i, j, we have

∫
f + g dµ =

n∑
i=1

m∑
j=1

(ai + bj) · µ(Ei ∩ Fj).
On the other hand, the finite additivity of µ implies:∫

f dµ+

∫
g dµ =

n∑
i=1

ai · µ
(
Ei ∩

( m⋃
j=1

Fj

))
+

m∑
j=1

bj · µ
(
Fj ∩

( n⋃
i=1

Ei

))

=

n∑
i=1

m∑
j=1

ai · µ(Ei ∩ Fj) +

m∑
j=1

n∑
i=1

bj · µ(Fj ∩ Ei)

=

n∑
i=1

m∑
j=1

(ai + bj) · µ(Ei ∩ Fj).

For the proof of the third property, note that f ≤ g and the representation (2.6) imply that whenever
there is x ∈ Ei∩Fj , we have ai = f(x) ≤ g(x) = bj , that is, whenever Ei∩Fj ̸= ∅, we have ai ≤ bj and thus
ai ·µ(Ei∩Fj) ≤ bj ·µ(Ei∩Fj). On the other hand, since µ(∅) = 0, we also have ai ·µ(Ei∩Fj) = bj ·µ(Ei∩Fj)
for the case Ei ∩ Fj = ∅. Hence,∫

f dµ =

n∑
i=1

m∑
j=1

ai · µ(Ei ∩ Fj) ≤
n∑

i=1

m∑
j=1

bj · µ(Ei ∩ Fj) =

∫
g dµ.

Finally, if {Ak ∈ M}∞k=1 is disjoint and A =
⋃∞

k=1Ak, then∫
A

f dµ =

n∑
i=1

ai ·µ
(
Ei∩

( ∞⋃
k=1

Ak

)
︸ ︷︷ ︸

=A

)
=

n∑
i=1

∞∑
k=1

ai · µ(Ei ∩Ak)︸ ︷︷ ︸
by countable additivity

=

∞∑
k=1

( n∑
i=1

ai · µ(Ei ∩Ak)︸ ︷︷ ︸
=
∫
Ak

f dµ

)
=

∞∑
k=1

∫
Ak

f dµ.

Moreover,
∫
∅ f dµ =

∑n
i=1 ai · µ(Ei ∩∅) =

∑n
i=1 ai · µ(∅) = 0 by µ(∅) = 0, which completes the proof.
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We will subsequently prove that the properties in Proposition 2.5 are also true and even extended for
general nonnegative measurable functions f, g : X → [0,∞] (see Proposition 2.7, Theorems 2.4 and 2.5).
Here, we extend the integral (2.5) to all functions f ∈ L+ by defining∫

f dµ
.
= sup

0≤ϕ≤f

∫
ϕ dµ, (2.7)

where the supremum is taken with respect to all simple functions ϕ in L+. For a function f : X → [0,∞]
measurable on E ∈ M, we define the integral of f over E as∫

E

f dµ
.
=

∫
f · 1E dµ. (2.8)

Note that f is definitely measurable on E if it is measurable, but not vice versa (e.g., f should be measurable
on both E and some F ∈ M such that E ∪ F = X — see Lemma 1.9). Proposition 1.28 and the following
ensure the integrals above are well-defined.

Proposition 2.6. The integral definitions (2.5) and (2.7) agree when f is simple.

Proof. Consider the integrals
∫
ϕ and

∫
f in the sense of (2.5) when f is simple. Then, clearly, we have

0 ≤
∫
f ≤ sup0≤ϕ≤f

∫
ϕ. On the other hand, by the third property of Proposition 2.5 and 0 ≤ ϕ ≤ f ,

0 ≤
∫
ϕ ≤

∫
f and thus 0 ≤ sup

0≤ϕ≤f

∫
ϕ ≤

∫
f,

hence we have

∫
f = sup

0≤ϕ≤f

∫
ϕ.

Proposition 2.7. For any f, g ∈ L+,

∫
f ≤

∫
g whenever f ≤ g, and

∫
c · f = c ·

∫
f for all c ∈ [0,∞).

Proof. If f ≤ g, it is obvious that

∫
f = sup

0≤ϕ≤f

∫
ϕ ≤ sup

0≤ϕ≤g

∫
ϕ =

∫
g. By the linearity of the integral

(2.5) for a simple function ϕ,∫
c · f = sup

0≤ϕ≤cf

∫
ϕ = sup

0≤ϕ≤f

∫
c · ϕ = c ·

(
sup

0≤ϕ≤f

∫
ϕ

)
= c ·

∫
f for any c ∈ [0,∞)

(for c = 0, we can have the same result simply by
∫
c · f =

∫
0 = 0 = c ·

∫
f).

To further investigate the properties and theory of the integral with respect to a measure, we establish
one of the fundamental convergence theorem below.

Theorem 2.3 (Monotone Convergence Theorem). Let {fn} be a sequence in L+ such that fn ≤ fn+1 for
all n and f = limn→∞ fn (= supn∈N fn), then

∫
f = limn→∞

∫
fn.

Proof. By fn ≤ fn+1 and Proposition 2.7, we have
∫
fn ≤

∫
fn+1, implying that

{ ∫
fn
}
is an increasing

sequence in [0,∞] and thus its limit “limn→∞
∫
fn ∈ [0,∞]” exists. Similarly, from fn ≤ supn∈N fn = f ,

we also have
∫
fn ≤

∫
f for all n, where f (= supn∈N fn) is measurable by Proposition 1.26, and taking the

limit n→ ∞ yields limn→∞
∫
fn ≤

∫
f .

To prove the reverse inequality, fix α ∈ (0, 1), let ϕ be a simple function such that 0 ≤ ϕ ≤ f , and
En

.
=
{
x : α · ϕ(x) ≤ fn(x)

}
. Then, by Proposition 2.7,

α

∫
En

ϕ ≤
∫
En

fn ≤
∫
fn. (2.9)

Since fn(x) ≤ fn+1(x) ∀x ∈ X, we have E1 ⊆ E2 ⊆ · · · ⊆ En ⊆ En+1 ⊆ · · · ; since f = limn→∞ fn,
for each x ∈ X, there exists n ∈ N such that ϕ(x) ≤ fN (x) ≤ f(x) for all N ≥ n by the definition of a
limit, implying that

⋃∞
n=1En = X. Therefore, by the fourth property in Proposition 2.5 and Theorem 2.1c,

limn→∞
∫
En
ϕ =

∫
ϕ, by which and taking the limit n → ∞ of (2.9) we obtain α

∫
ϕ ≤ limn→∞

∫
fn. Since

this is true for all α ∈ (0, 1), it is true for α = 1 (consider a sequence {αi ∈ (0, 1)} converging to 1 and
taking the limit i→ ∞ on both sides), that is,

∫
ϕ ≤ limn→∞

∫
fn. Taking the supremum, we finally obtain∫

f = sup0≤ϕ≤f

∫
ϕ ≤ limn→∞

∫
fn, which completes the proof.
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Our first application of the monotone convergence theorem (MCT), Theorem 2.3, is the proof of linearity
of the integral (2.7) in the next theorem.

Theorem 2.4 (Linearity of Integrals). For any f, g ∈ L+,

1.

∫
(f + g) =

∫
f +

∫
g,

2.

∫
c · f = c ·

∫
f for all c ∈ [0,∞].

Proof. By Theorem 1.1, there exists sequences of nonnegative simple functions {ϕn} and {ψn} that increase
to f and g, respectively. Then, {ϕn + ψn} increases to f + g and thus, by the MCT (Theorem 2.3) and
Proposition 2.5, we prove the first part as follows:∫

(f + g) = lim
n→∞

∫
(ϕn + ψn) = lim

n→∞

∫
ϕn + lim

n→∞

∫
ψn =

∫
f +

∫
g.

The second part is obvious by Proposition 2.7 when c ̸= ∞. For a general case c ∈ [0,∞], consider an
increasing sequence {ci ∈ [0,∞)} converging to c ∈ [0,∞]. Then, by the MCT and Proposition 2.7 again,∫

c · f = lim
i→∞

∫
ci · f =

(
lim
i→∞

ci

)
·
∫
f = c ·

∫
f.

Corollary 2.4. If {fn} is a finite or infinite sequence in L+ and f =
∑

n fn, then
∫
f =

∑
n

∫
fn.

Proof. By Theorem 2.4, we have
∫ ∑N

n=1 fn =
∑N

n=1

∫
fn for any finite N ∈ N. Letting N → ∞ and

applying the MCT (Theorem 2.3) again, we obtain

∞∑
n=1

∫
fn = lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn =

∫
lim

N→∞

N∑
n=1

fn =

∫ ∞∑
n=1

fn,

which completes the proof.

Theorem 2.5. For f ∈ L+, let λ : M → [0,∞] be defined as λ(E)
.
=

∫
E

f dµ for E ∈ M. Then,

1. λ is a measure on M;

2. for any g ∈ L+,

∫
g dλ =

∫
g · f dµ.

Proof. For any E ∈ M, 0 ≤
∫
f · 1E dµ = λ(E) by 0 ≤ f · 1E and Proposition 2.7. Moreover,

λ(∅) =

∫
∅
fdλ =

∫
f · 1∅ dλ =

∫
0 dµ = 0.

If {Ei ∈ M}∞i=1 is disjoint and F
.
=
⋃∞

i=1Ei, then F ∈ M and thus by Proposition 1.25, f ·1F isM-measurable.
By Corollary 2.4 and the definition,

λ

( ∞⋃
i=1

Ei

)
=

∫
F

f dµ =

∫
f · 1F dµ =

∫ ∞∑
i=1

f · 1Ei dµ =

∞∑
i=1

∫
f · 1Ei dµ =

∞∑
i=1

∫
Ei

f dµ =

∞∑
i=1

λ(Ei).

Therefore, λ is a measure on M.
Next, let g ∈ L+ be simple and given by g =

∑n
i=1 ai · 1Ei

for a disjoint sequence {Ei}ni=1 that covers X
and nonnegative constants ai’s. Then, by the definitions and Theorem 2.4,∫

g dλ =

n∑
i=1

ai · λ(Ei) =

n∑
i=1

ai ·
∫
Ei

f dµ =

n∑
i=1

ai ·
∫
f · 1Ei

dµ =

∫
f ·
( n∑

i=1

ai · 1Ei

)
dµ =

∫
f · g dµ.
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If g ∈ L+ is not simple, then by Theorem 1.1, there is an increasing sequence {gn} of simple functions gn
converging to g pointwisely. Then, {gn · f}∞n=1 increases pointwisely to g · f and by the MCT,∫

g dλ = lim
n→∞

∫
gn dλ = lim

n→∞

∫
gn · f dµ =

∫
lim
n→∞

gn · f dµ =

∫
g · f dµ,

which completes the proof.

Proposition 2.8. If f ∈ L+, then
∫
f = 0 iff f = 0 a.e.

Proof. If f is simple and thus represented as f =
∑n

i=1 ai ·µ(Ei) for nonnegative ai’s, then it is obvious that∫
f = 0 iff for each i, either ai = 0, µ(Ei) = 0, or both, implying f = 0 everywhere but within the null set

N =
⋃{

Ei : ai ̸= 0
}
.

In general, if f = 0 a.e. and ϕ is simple with 0 ≤ ϕ ≤ f , then ϕ = 0 a.e, hence
∫
ϕ = 0. By Theorem 1.1,

there exists a sequence of simple functions {ϕn ∈ L+} such that 0 ≤ ϕn ≤ f and ϕn → f . Hence, the MCT
implies: ∫

f =

∫
lim
n→∞

ϕn = lim
n→∞

∫
ϕn = lim

n→∞
0 = 0.

To prove the converse, consider the sequence {En} given by En
.
= {x : f(x) > 1/n} = f−1((1/n,∞]) ∈ M

(see Corollary 1.9). Then, its union E
.
=
⋃∞

n=1En also belongs to M and satisfies

E = f−1((0,∞]) =
{
x : f(x) > 0

}
. (2.10)

Clearly, f = 0 on Ec since Ec =
{
x : f(x) = 0

}
; “f = 0 a.e.” implies that µ(E) = 0 by (2.10). Conversely, if

it is false that f = 0 a.e., then by (2.10), we must have µ(E) > 0, which and the subadditivity in Theorem 2.1
imply:

0 < µ(E) ≤
∞∑

n=1

µ(En),

meaning that there exists n ∈ N such that µ(En) > 0. But for any n ∈ N, we have f(x) > n−1 ∀x ∈ En,
implying f ≥ n−1 · 1En , and thus the application of Proposition 2.7 yields

∫
f ≥ n−1µ(En) > 0. Therefore,

the contraposition shows that
∫
f = 0 implies f = 0 a.e.

Corollary 2.5. If f, g ∈ L+, then
∫
f =

∫
g iff f = g a.e.

Proof. By Proposition 2.8,
∫
(f − g) = 0 iff f − g = 0 a.e. iff f = g a.e., and then apply Theorem 2.4.

Proposition 2.9. For any f, g ∈ L+,

∫
f ≤

∫
g whenever f ≤ g a.e.

Proof. f ≤ g a.e. implies that there exists E ∈ M such that f(x) ≤ g(x) for all x ∈ E (i.e., f · 1E ≤ g · 1E)
and µ(Ec) = 0. Since we trivially have f · 1Ec = g · 1Ec = 0 on E, it is obvious that f · 1Ec = g · 1Ec = 0
a.e. and thus

∫
f · 1Ec =

∫
g · 1Ec = 0 by Corollary 2.5 and Proposition 2.8. Therefore,∫

f =

∫
f · 1E +

∫
f · 1Ec =

∫
f · 1E ≤

∫
g · 1E =

∫
g · 1E +

∫
g · 1Ec =

∫
g.

by linearity (Theorem 2.4) and Proposition 2.7.

The generalized MCTs are the following Corollaries, which require fn to increase (and converge to f)
a.e., not necessarily pointwisely.

Corollary 2.6. Let {fn} be a sequence in L+ such that fn increases to a measurable function f ∈ L+ a.e.,
then

∫
f = limn→∞

∫
fn.
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Proof. Suppose fn(x) increases to f(x) for all x ∈ E, where µ(Ec) = 0. Then obviously, both f = f · 1E

and for all n, fn = fn · 1E hold over E and thus hold a.e. by µ(Ec) = 0. Here, fn · 1E pointwisely increases
to f · 1E . Therefore, ∫

f dµ =

∫
f · 1E dµ = lim

n→∞

∫
fn · 1E dµ = lim

n→∞

∫
fn dµ.

by Corollary 2.5 and the MCT.

Lemma 2.1. If {fn} ⊂ L+ converges to f a.e., then there exists g ∈ L+ s.t. fn → g a.e. (i.e., f = g a.e.).
If fn → f pointwisely, then f ∈ L+.

Proof. By Corollary 2.3, there exists a measurable function f̂ : X → R such that fn → f = f̂ on some
E ∈ M such that µ(Ec) = 0. Since the metric space (R, d̄) for d̄ given by (1.9) is sequentially compact and

[0,∞] ⊂ R is a compact set, all the limit points of fn(x), whenever exists, are in [0,∞], hence f̂(x) ∈ [0,∞]

for all x ∈ E. Let g(x)
.
= max{f̂(x), 0}. Then, g is measurable by Corollary 1.10, g = f̂ on E and g ≥ 0.

That is, g ∈ L+ and fn → f = f̂ = g on E.
If fn → f pointwisely, then f is measurable by Proposition 1.26, and the proof can be done in the same

way, but with E = X.

Corollary 2.7. Let {fn} be a sequence in L+ which increases to a function f a.e., then there exists a
measurable function g ∈ L+ such that f = g a.e. and

∫
g = limn→∞

∫
fn.

Proof. By Lemma 2.1, there exists a measurable function g ∈ L+ such that f = g a.e. (i.e., fn increases to
g a.e.). Now, the proof is obvious by Corollary 2.6.

All of the MCTs above assume that at least {fn} have to be increasing. If not, the MCTs would not hold
even with the convergent sequences, as can be seen with 1(n,n+1) and n · 1(0,1/n), both of which converge to
zero, but

∫
1(n,n+1) =

∫
n · 1(0,1/n) = 1. The following Fatou’s lemma gives an inequality which is valid for

any sequence {fn}.

Lemma 2.2 (Fatou’s Lemma). For any sequence {fn} in L+,∫ (
lim inf
n→∞

fn
)
≤ lim inf

n→∞

∫
fn. (2.11)

Proof. For each n ∈ N, we have infm≥n fm ≤ fk for all k ≥ n, hence
∫
infm≥n fm ≤

∫
fk for all k ≥ n by

Proposition 2.7, which again implies
∫
infm≥n fm ≤ infk≥n

∫
fk. Now, taking the limit n → ∞, noting the

sequence {infm≥n fm} is pointwisely increasing to “lim infn→∞ fn” which is measurable by Proposition 1.26,
and applying the MCT (Theorem 2.3), we have∫

lim inf
n→∞

fn dµ =

∫
lim
n→∞

(
inf
n≥m

fn

)
dµ = lim

n→∞

∫
inf
n≥m

fn dµ ≤ lim
n→∞

(
inf
n≥m

∫
fn dµ

)
= lim inf

n→∞

∫
fn dµ,

where we have substituted the definition lim inf
n→∞

gn
.
= lim

n→∞

(
inf
m≥n

gn

)
for any sequence {gn}∞n=1 of functions

or real numbers gn.

Applying Fatou’s lemma, we obtain the following for a sequence which is converging but not necessarily
monotonically increasing.

Corollary 2.8. If a sequence {fn} ⊂ L+ satisfies one of the followings:

1. fn pointwisely converges to f , or

2. fn converges to a measurable function f ∈ L+ a.e.,

then

∫
f ≤ lim inf

n→∞

∫
fn.
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Proof. Fatou’s lemma implies that fn satisfies (2.11), hence the proof is complete if
∫
f =

∫ (
lim infn→∞ fn

)
and f ∈ L+ for each case. For the first case, the former is obvious since f = limn→∞ fn = lim infn→∞ fn;
for the latter, apply Lemma 2.1. For the second part, suppose that fn → f a.e. and f ∈ L+. Then, by
fn → f a.e., we have f = lim infn→∞ fn a.e., hence

∫
f =

∫ (
lim infn→∞ fn

)
by Corollary 2.5.

Corollary 2.9. Let {fn} be a sequence in L+ which converges to f a.e., then there exists a measurable

function g ∈ L+ such that f = g a.e. and

∫
g ≤ lim inf

n→∞

∫
fn.

Proof. Apply Lemma 2.1 and then Corollary 2.8.

Proposition 2.10. If f ∈ L+ and
∫
f <∞, then f−1({∞}) = {x : f(x) = ∞} is a null-set.

Proof. By f ∈ L+, f is measurable and thus E
.
= f−1({∞}) ∈ M (∵ {∞} ∈ BR). If E is not null, then we

have a contradiction to
∫
f <∞ as follows: since f(x) = ∞ for x ∈ E and f ≥ f · 1E ,∫

f ≥
∫
E

f = ∞ · µ(E) = ∞,

where µ(E) > 0. Therefore, E must be a null set for
∫
f <∞.

2.4 Integration of Real-valued Functions

Now, we define the integral of a real-valued measurable functions f : X → R by extending the integral
introduced in the previous section. In what follows, we say that a real-valued function f is M-measurable
iff it is (M,BR)-measurable, or just measurable if M is understood so that there is no confusion. Note that
a real-valued function is identified as

a function f : X → R whose image is a subset of R (i.e., Im(f) ⊆ R). (2.12)

This clarification defines the inverse map f−1 : P(R) → P(X) with the property that

f−1({∞}) = f−1({−∞}) = ∅ (2.13)

(see also (1.11)). Proposition 1.24 and (2.13) assure that f is (M,BR)-measurable iff it is (M,BR)-measurable,
so that both concepts of measurability (i.e., (M,BR)- and (M,BR)-measurability) coincide. In what follows,
we call such a function f satisfying (2.12) (and thereby (2.13)) a real-valued function f : X → R, with a
slight abuse of notations.

In this note, we construct an integral with respect to a measurable real-valued function. Consider the
positive and negative parts of a measurable real-valued function f , namely the non-negative real-valued
functions f+ and f− given by (1.12), which are measurable by Corollary 1.11. If at least one of

∫
f+ and∫

f− is finite, we define ∫
f
.
=

∫
f+ −

∫
f−. (2.14)

Moreover, for f measurable on E ∈ M, we also define

∫
E

f
.
=

∫
f · 1E =

∫
E

f+ −
∫
E

f−, where the second

equality is true by Theorem 2.4 and the definitions (2.8) and (2.14).

Definition 2.1. A function f : X → R is integrable iff it is measurable and both
∫
f+ and

∫
f− are finite.

Generally, f is integrable on E ∈ M iff it is measurable on E and both
∫
E
f+ and

∫
E
f− are finite.

Proposition 2.11. f is integrable iff
∫
|f | <∞.

Proof. Suppose that f is integrable. Then, both
∫
f+ and

∫
f− are finite, hence∫

|f | =
∫
f+ +

∫
f− <∞,

by Theorem 2.4 and |f | = f+ + f−. Conversely, if 0 ≤
∫
|f | =

∫
f+ +

∫
f− < ∞, then trivially

∫
f+ < ∞

and
∫
f− <∞, which completes the proof.
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In what follows, we denote

L1(X) := the set of integrable real-valued functions on X;

we also denote it by L1(µ), L1(X,µ), or simply L1 depending on the context.

Proposition 2.12. L1(X) is a real vector space and the integral is a linear functional on it. In summary,

αf + βg ∈ L1 and

∫
(αf + βg) = α ·

∫
f + β ·

∫
g for any α, β ∈ R and f, g ∈ L1.

Proof. First, by
∫
|f | <∞ and

∫
|g| <∞ (both are true by Proposition 2.11) and |αf+βg| ≤ |α|·|f |+|β|·|g|,

we have ∫
|αf + βg| ≤ |α| ·

∫
|f | + |β| ·

∫
|g| <∞,

which and Proposition 2.11 again imply that αf +βg ∈ L1. This itself implies that L1 is a vector space over
R (e.g., for the existence of the identity element 0 ∈ L1, take α = β = 0 for any functions f, g ∈ L1). Next,
by linearity of the integral (Theorem 2.4), it is obvious that for α > 0,∫

α · f =

∫
α · f+ −

∫
α · f− = α ·

∫
f+ − α ·

∫
f− = α ·

(∫
f+ −

∫
f−
)

= α ·
∫
f ;

for α = 0,
∫
α · f =

∫
0 = 0 and for α < 0,∫

α · f =

∫
(α · f)+ −

∫
(α · f)− =

∫
(−αf−)−

∫
(−αf+) = α ·

(
−
∫
f− +

∫
f+
)

= α ·
∫
f.

To show additivity, let h
.
= f + g and note that h+ − h− = h = f+ − f− + g+ − g−, which implies

h+ + f− + g− = h− + f+ + g+.

Therefore, by linearity again, we obtain
∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+. Finally, regrouping the

terms yields the desired result:∫
h =

∫
h+ −

∫
h− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g− =

∫
f +

∫
g.

Proposition 2.13. If f ∈ L1, then |
∫
f | ≤

∫
|f |.

Proof. |
∫
f | = |

∫
f+ −

∫
f−| ≤ |

∫
f+|+ |

∫
f−| =

∫
f+ +

∫
f− =

∫
|f |.

Proposition 2.14. If f, g ∈ L1, then

∫
E

f =

∫
E

g for all E ∈ M iff

∫
|f − g| = 0 iff f = g a.e.

Proof. Let h
.
= f − g. Then, h ∈ L1 by Proposition 2.12 and thus

∫
|h| < ∞ by Proposition 2.11, meaning

that |h| ∈ L+. Hence,
∫
|f − g| =

∫
|h| = 0 iff h = 0 a.e. by Proposition 2.8, hence, iff f = g a.e.

Next, suppose
∫
|h| = 0. Then, by Propositions 2.12 and 2.13, we have for each E ∈ M:∣∣∣∣ ∫

E

f −
∫
E

g

∣∣∣∣ = ∣∣∣∣ ∫ h · 1E

∣∣∣∣ ≤ ∫ |h| · 1E ≤
∫

|h| = 0,

where the last inequality is true by |h| · 1E ≤ |h| and Proposition 2.7. Hence, we have
∫
E
f =

∫
E
g for

each E ∈ M. Conversely, if
∫
E
f =

∫
E
g for all E ∈ M, then we have

∫
E
h = 0 for all E ∈ M by linearity

(Proposition 2.12). Take E = {x : h(x) ≥ 0}. Then, since E ∪ Ec = X and

|h| = |h| · (1E + 1Ec) = |h| · 1E + |h| · 1Ec

= h · 1E − h · 1Ec ,

we finally have ∫
|h| =

∫
h · 1E −

∫
h · 1Ec =

∫
E

h−
∫
Ec

h = 0,

which completes the proof.
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Proposition 2.14 shows that for the purpose of integration, it makes no difference if we alter functions
on null sets. Indeed, one can integrate functions f that are only defined on a measurable set E ∈ M whose
complement is null simply by defining f to be zero (or anything else) on Ec. In this fashion, we can treat
R-valued functions that are finite a.e. as real-valued functions for the purpose of integration (see Section 2.5).

In what follows, we show the last of the three basic convergence theorems (the other two being the MCT
and Fatou’s lemma), the dominated convergence theorem (DCT), and its variants.

Theorem 2.6 (Dominated Convergence Theorem). Let {fn} be a sequence in L1 such that (a) fn converges
to a measurable function f a.e. and (b) there exists a nonnegative g ∈ L1 such that |fn| ≤ g a.e. for all n.
Then, f ∈ L1 and

∫
f = limn→∞

∫
fn.

Proof. First, note that:

1. |fn| ≤ g a.e. means that there exists En ∈ M such that |fn(x)| ≤ g(x) for all x ∈ En and µ(Ec
n) = 0;

2. fn → f a.e. implies that there is F ∈ M such that fn → f poinwisely on F and µ(F c) = 0.

Let E
.
=
⋂

nEn andH
.
= E∩F , both of which belongs toM by Proposition 1.1. Then, we have |fn(x)| ≤ g(x)

for any n ∈ N and all x ∈ E, hence for all x ∈ H; taking the limit n→ ∞ on both sides yields |f(x)| ≤ g(x)
for all x ∈ H; by subadditivity and µ(Ec

n) = µ(F c) = 0 for all n, we have µ(Hc) = 0 as shown below:

µ(Hc) = µ(Ec ∪ F c) ≤ µ(Ec) + µ(F c) ≤
∑

nµ(E
c
n) + µ(F c) = 0.

Therefore, |f | ≤ g a.e. Since |f | = f+ + f− is measurable by Corollary 1.11,∫
|f | ≤

∫
g <∞

by Propositions 2.9 and 2.11 with 0 ≤ g ∈ L1. Therefore, f ∈ L1 again by Proposition 2.11.
Next, since |fn| ≤ g on H for all n, we have −fn ≤ g and fn ≤ g both on H; that is,

g + fn ≥ 0 and g − fn ≥ 0 both on H. (2.15)

Similarly, g+f ≥ 0 and g−f ≥ 0 both onH from |f | ≤ g onH. It is trivial that g·1Hc = fn·1Hc = f ·1Hc = 0
on H, meaning that it is true a.e. and thus∫

g · 1Hc =

∫
fn · 1Hc =

∫
f · 1Hc = 0

by Proposition 2.14. Moreover, fn → f on F implies fn → f on H and hence,

lim inf
n→∞

fn = lim sup
n→∞

fn = lim
n→∞

fn = f on H,

where the limit is a.e.-defined (i.e., defined onH). Therefore, by linearity (Theorem 2.4 and Proposition 2.12),
the application of Fatou’s lemma (Lemma 2.2) to (2.15), and the fact that both integrals (2.7) and (2.14)
are equivalent for a non-negative real-valued function f , we finally have∫
g +

∫
f =

∫
(g + f) · 1H ≤ lim inf

n→∞

∫
(g + fn) · 1H =

∫
g · 1H + lim inf

n→∞

∫
fn · 1H =

∫
g + lim inf

n→∞

∫
fn∫

g −
∫
f =

∫
(g − f) · 1H ≤ lim inf

n→∞

∫
(g − fn) · 1H =

∫
g · 1H − lim sup

n→∞

∫
fn · 1H =

∫
g − lim sup

n→∞

∫
fn.

Therefore, lim sup
n→∞

∫
fn ≤

∫
f ≤ lim inf

n→∞

∫
fn and the result follows.

The following is a concatenation of the variants of the DCT (Theorem 2.6) and itself. The issue here is
the measurability of the function f to which the sequence {fn} ⊂ L1 converges.

Corollary 2.10. Let {fn} be a sequence in L1 such that
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(a) at least one of the followings is true:

• fn converges to a measurable function f a.e.;

• fn converges to f pointwisely;

• fn converges to f a.e. and the measure space is complete,

(b) there exists a nonnegative g ∈ L1 such that |fn| ≤ g a.e. for all n.

Then, f ∈ L1 and
∫
f = limn→∞

∫
fn.

Proof. If fn converges to a measurable function f a.e., then the statement becomes exactly same as the
DCT (Theorem 2.6). For the other two cases, f is measurable by the respective Propositions 1.25 and 2.2,
thereafter the proof is obvious by Theorem 2.6.

Another corollary is the bounded convergence theorem, which is useful when the measure space is finite.

Corollary 2.11 (Bounded Convergence Theorem). Suppose the measure space is finite (i.e., µ(X) < ∞)
and {fn} is a sequence of uniformly a.e.-bounded real-valued measurable functions which satisfies at least
one of the three convergence conditions in Corollary 2.10, then f ∈ L1 and

∫
f = limn→∞

∫
fn.

Proof. Since the sequence {fn} is uniformly a.e.-bounded, there is a real number M > 0 and E ∈ M such
that |fn(x)| ≤M for all x ∈ E and all n, and µ(Ec) = 0. Let g(x)

.
=M for all x ∈ X. Then, the sequence is

dominated by g a.e. (i.e., |fn| ≤ g on E). Moreover, g ∈ L1 since it is a constant function on a set of finite
measure (clearly,

∫
g dµ =

∫
M dµ =M · µ(X) <∞). Therefore, the result follows from Corollary 2.10.

The DCT and the bounded convergence theorem can be extended to the Lp-space (see Section 3.5).

2.5 Integration of General Extended Read-valued Functions

In this section, we extend the integral defined in the previous sections to that with respect to a class of a.e.-
defined extended real-valued functions, which is not necessarily measurable on a null set. The idea behind
this is that by Proposition 2.14, any two functions in L1 that are equal a.e. have the same integral. To be
precise, we define the equivalence class [g]E of a function g : X → R on E ⊆ X as

[g]E
.
=
{
f : f is a.e.-defined and f = g a.e., on E

}
and [g]

.
= [g]X .

Definition 2.2. An a.e.-defined function f : X → R is integrable iff there exists g ∈ L1 such that f ∈ [g].
Generally, f is integrable on E ∈ M iff there exists g : X → R such that g is integrable on E and f ∈ [g]E.

For an integrable function f : X → R defined a.e., we define its integral as∫
f dµ

.
=

∫
g dµ for g ∈ L1 such that f ∈ [g]. (2.16)

Furthermore, for f integrable on E ∈ M and a set E
.
= E ∪ F such that F ⊆ N for some N ∈ M with

µ(N) = 0, we define the integral of f on E as∫
E

f dµ
.
=

∫
E

g dµ =

∫
g · 1E dµ

for g : X → R such that g is integrable on E and f ∈ [g]E . By Proposition 2.10, a necessary condition for f
to be integrable is that f−1({±∞}) = {x : f(x) = ±∞} is a null set; otherwise, any measurable function g
that is equal to f a.e. has µ(E) > 0 for E

.
= {x : g(x) = ±∞}, resulting in the contradiction to g ∈ L1:∫

|g| dµ ≥
∫
E

|g| dµ = ∞ · µ(E) = ∞,

hence g ̸∈ L1 by Proposition 2.11. In what follows, we denote

L1
e = {f : f is a.e.-defined and integrable},
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where the subscript ‘e’ denotes ‘extended’.
The properties shown in the previous section with respect to the integral of a real-valued function can

be easily extended to this generalized integral. Moreover, considering ρ defined for f, g ∈ L1
e as

ρe(f, g)
.
=

∫
|f̂ − ĝ| for f̂ , ĝ ∈ L1 such that f ∈ [f̂ ] and g ∈ [ĝ] (2.17)

the space (L1
e , ρe) constitutues a pseudometric space, where ρe(f, g) = 0 iff f = g a.e. If one considers the

following space [L1] with its metric κ:

[L1]
.
= {[f ] : f ∈ L1} and κ([f ], [g]) =

∫
|f − g| for f, g ∈ L1,

then ([L1], κ) is a metric space (∵ [f ] = [g] iff f = g a.e. iff κ([f ], [g]) =
∫
|f − g| = 0 by Proposition 2.14).

In what follows, we focus on extending the DCT in a simplified manner.

Theorem 2.7. Let {fn} be a sequence in L1
e such that (a) fn → f a.e. and (b) there exists a nonnegative

g ∈ L1
e such that |fn| ≤ g a.e. for all n. Then, f ∈ L1

e and
∫
f = limn→∞

∫
fn.

Proof. By the definition of L1
e , there exists {f̂n} ⊂ L1 and ĝ ∈ L1 such that fn = f̂n a.e. and g = ĝ a.e.

Therefore, fn → f a.e. and |fn| ≤ g a.e. imply that f̂n → f a.e. and |f̂n| ≤ ĝ a.e., respectively. Moreover,

by Proposition 2.3 and measurability of f̂n for each n, there exists a measurable function f̂ such that f = f̂
a.e. and fn → f̂ a.e. Therefore, by the DCT (Theorem 2.6), f̂ ∈ L1 and

∫
f̂ = limn→∞

∫
f̂n; the result

follows by the definition of L1
e and the integral (2.16).

Theorem 2.8. Let {fn} be a sequence in L1
e such that

∑∞
j=1

∫
|fj | < ∞. Then,

∑n
j=1 fj converges a.e. to

a function in L1
e and

∫ ∑∞
j=1 fj =

∑∞
j=1

∫
fj.

Proof. For each n, there exists f̂n ∈ L1 such that fn = f̂n a.e. and thus |fn| = |f̂n| a.e. and by the definition

(2.16) of an integral and Proposition 2.11,
∫
|fn| =

∫
|f̂n| <∞. Hence, by Corollary 2.4,∫ ∞∑

j=1

|f̂j | =

∞∑
j=1

∫
|f̂j | =

∞∑
j=1

∫
|fj | <∞,

meaning g
.
=
∑∞

j=1 |f̂j | ∈ L1 (note that
∑∞

j=1 |f̂j | = supn∈N
∑n

j=1 |f̂j | is measurable by Proposition 1.26).

In particular, by Proposition 2.10,
∑∞

j=1 |f̂j(x)| is finite for a.e. x and for each such x the series
∑n

j=1 f̂j(x)

converges. Since
∑n

j=1 fj
a.e.
=
∑n

j=1 f̂j for all n, the a.e.-convergence of
∑n

j=1 f̂j(x) means that of
∑n

j=1 fj(x)
and in addition, we have ∣∣∣ n∑

j=1

fj

∣∣∣ = ∣∣∣ n∑
j=1

f̂j

∣∣∣ ≤ ∞∑
j=1

∣∣f̂j∣∣ = g a.e.

Therefore, Theorem 2.7 concludes that
∑∞

j=1 fj ∈ L1
e and

∫ ∑∞
j=1 fj =

∑∞
j=1

∫
fj .

For the further discussions, we also define the measurability of an a.e.-defined function as follows.

Definition 2.3. An a.e.-defined function f : X → [0,∞] is measurable, denoted by f ∈ L+
e , iff there exists

g ∈ L+ such that f ∈ [g].



Chapter 3

More on Measures and Integrations

3.1 Outer Measures

Outer measure are useful tools for constructing (complete) measures; its definition comes with the mono-
tonicity and subadditivity properties in Theorem 2.1 in Section 2.1 and conceptually means an approximation
of a measure from outside.

Definition 3.1. An outer measure µ∗ on a non-empty set X is a function µ∗ : P(X) → [0,∞] such that

1. µ(∅) = 0,

2. (Monotonicity) E ⊆ F =⇒ µ∗(E) ≤ µ∗(F ),

3. (Subadditivity) µ∗
(⋃∞

i=1Ei

)
≤
∑∞

j=1 µ
∗(Ei) , where {Ei}∞i=1 can be disjoint or not.

The domain P(X) of an outer measure is the largest σ-algebra on X. A most common way of constructing
outer measures is to start with a family E of “elementary sets” satisfying certain measure-theoretic properties
shown below.

Proposition 3.1. Let E ⊆ P(X) and ρ : E → [0,∞] be such that ∅, X ∈ E and ρ(∅) = 0. Define

µ∗(A) = inf

{ ∞∑
j=1

ρ(Ej) : Ej ∈ E and A ⊆
⋃∞

j=1Ej

}
for A ∈ P(X). Then, µ∗ is an outer measure on X.

Proof. For any A ∈ P(X), there exists {Ej}∞j=1 ⊆ E such that A ⊆
⋃∞

j=1Ej (take Ej = X for all j) so the
definition of µ∗ makes sense. If we take Ej = ∅ for all j and A = ∅ ∈ E, we obtain µ∗(∅) = 0. Next, it is
obvious that if A ⊆ B, then B ⊆

⋃∞
j=1Ej implies A ⊆

⋃∞
j=1Ej , hence{∑∞

j=1 ρ(Ej) : Ej ∈ E and B ⊆
⋃∞

j=1Ej

}
⊆
{∑∞

j=1 ρ(Ej) : Ej ∈ E and A ⊆
⋃∞

j=1Ej

}
,

which and the property of the infimum (S ⊆ T ⊆ R implies inf T ≤ inf S) result in µ∗(A) ≤ µ∗(B). To prove
the countable subadditivity, suppose {Aj}∞j=1 ⊆ P(X) and ε > 0. Then, by the property of the infimum:

for every δ > 0, there exists x ∈ S such that x ≤ inf S + δ,

(in our case, S ⊆ [0,∞] and the equality explains the case ∞ = ∞),
(3.1)

for each j, there exists {Ek
j }∞k=1 ⊆ E such that Aj ⊆

⋃∞
k=1E

k
j and

∑∞
k=1 ρ(E

k
j ) ≤ µ∗(Aj)+ ε · 2−j ; summing

up for all j results in
∞∑
j=1

∞∑
k=1

ρ(Ek
j ) ≤

∞∑
j=1

µ∗(Aj) + ε. (3.2)

Since
⋃∞

j=1Aj ⊆
⋃∞

j,k=1E
k
j , taking the infimum on (3.2) for all such sets {Ek

j ∈ E}∞j,k=1 and then limiting

ε→ 0 (as ε is arbitrary) results in µ∗(
⋃∞

j=1Aj) ≤
∑∞

j=1 µ
∗(Aj).

37
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If µ∗ is an outer measure on X, a set A ⊆ X is called µ∗-measurable iff

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) for all E ⊆ X.

Of course, by subadditivity, the inequality µ∗(E) ≤ µ∗(E ∩ A) + µ∗(E ∩ Ac) holds for any A and E, so to
prove that A is µ∗-measurable, it suffices to prove the reverse inequality, which is trivial if µ∗(E) = ∞. In
summary, A is µ∗-measurable iff:

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac) for all E ⊆ X such that µ∗(E) <∞.

The motivation for the notion of µ∗-measurability is that for E ⊆ A, µ∗(E) = µ∗(E∩A)+µ∗(E∩Ac) means
that the outer measure of A, µ∗(A), is equal to the inner measure µ∗(E)−µ∗(E \A). The following theorem
formalizes this idea and extends it to general µ∗-measurable sets.

Theorem 3.1 (Carathéodory’s Theorem). If µ∗ is an outer measure on X, then the collection M of all
µ∗-measurable sets is a σ-algebra, and the restriction of µ∗ to M is a complete measure.

Proof. First, since the definition of µ∗-measurability is symmetric in A and Ac, M is closed under taking
complements. Next, for A,B ∈ M and E ⊆ X,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)

= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)︸ ︷︷ ︸
=µ∗(E∩A)

+µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc)︸ ︷︷ ︸
=µ∗(E∩Ac)

by the definition of µ∗-measurability. On the other hand, A ∪ B = (A ∩ B) ∪ (A ∩ Bc) ∪ (Ac ∩ B), so by
subadditivity of µ∗,

µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B) ≥ µ∗(E ∩ (A ∪B))

and hence, we obtain
µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c),

meaning that A ∪ B is µ∗-measurable and thus belongs to M. Therefore, M is an algebra. Moreover, if
A,B ∈ M and A ∩B = ∅, then since A and B are disjoint,

µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩Ac)

= µ∗(A ∪ (B ∩A)) + µ∗(∅ ∪ (B \A)) = µ∗(A) + µ∗(B),

so µ∗ is finitely additive on M.
To show that M is a σ-algebra, let {Aj}∞j=1 be a sequence of disjoint sets in M, Bn

.
=
⋃n

j=1Aj and

B =
⋃∞

j=1Aj . Then for any E ⊆ X, since {Aj}∞j=1 is disjoint, we have Bn ∩An = An and Bn \An = Bn−1

for all n, and thereby,

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Ac
n) = µ∗(E ∩An) + µ∗(E ∩Bn−1)

= µ∗(E ∩An) + µ∗(E ∩An−1) + µ∗(E ∩Bn−2)
...
=
∑n

j=1 µ
∗(E ∩Aj) ∀n ∈ N.

Moreover, it is obvious by subadditivity that µ∗(E \Bn) ≥ µ∗(E \B), hence we obtain

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bc
n) ≥

n∑
j=1

µ∗(E ∩Aj) + µ∗(E ∩Bc)

and letting n→ ∞ and using subadditivity results in

µ∗(E) ≥
∞∑
j=1

µ∗(E ∩Aj) + µ∗(E ∩Bc) ≥ µ∗
(⋃∞

j=1(E ∩Aj)
)
+ µ∗(E ∩Bc)

= µ∗(E ∩B) + µ∗(E ∩Bc) ≥ µ∗(E),
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where all the inequalities thus become equalities. Therefore, we have B ∈ M and thus M is a σ-algebra.
Moreover, taking E = B results in µ∗(B) =

∑∞
j=1 µ

∗(Aj), implying that µ∗|M is countably additive and
thus a measure on (X,M).

Finally, to show the completeness of µ∗, it suffices to prove that µ∗(A) = 0 =⇒ A ∈ M. Obviously, if
µ∗(A) = 0, then for any E ⊆ X, we have by the properties of an outer measure,

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac) ≤ µ∗(A) + µ∗(E ∩Ac) = µ∗(E ∩Ac) ≤ µ∗(E), (3.3)

so that A ∈ M. Therefore, the measure µ∗|M is complete.

The Carathéodory’s Theorem can be used to extend the domains of a premeasure µ0 : A → [0,∞] and a
measure µ : M → [0,∞] to construct a measure from µ0 and a complete measure from µ on their extended
domains M and M, respectively, where A is an algebra, M is a σ-algebra (in the former, M

.
= σ(A)), and M

is the completion of M. We first consider the former case below.

Definition 3.2. For an algebra A ⊆ P(X), a map µ0 : A → [0,∞] is said to be a premeasure iff:

• µ0(∅) = 0;

• if {Aj}∞j=1 ⊆ A is disjoint and
⋃∞

j=1Aj ∈ A, then µ0(
⋃∞

j=1Aj) =
∑∞

j=1 µ0(Aj).

Note that a premeasure is the same as a measure except that its domain is an algebra, not necessarily a σ-
algebra. Hence, the countable additivity holds only when

⋃∞
j=1Aj ∈ A in its definition above. In particular,

a premeasure is finitely additive since one can take Aj = ∅ for j large. Theorem 2.1 also holds even if µ is a
premeasure, provided that its domain contains the respective underlying countable unions and intersections
in the properties.

Lemma 3.1 (Monotonicity). E ⊆ F =⇒ µ0(E) ≤ µ0(F ) for any E,F ∈ A.

Proof. µ0(F ) = µ0(E ∪ (F \ E)) = µ0(E) + µ0(F \ E) ≥ µ0(E).

A finite and a σ-finite premeasure are defined in a similar manner to a finite and a σ-finite measure,
respectively — a premeasure µ0 is said to be finite iff µ0(X) < ∞ and σ-finite iff there exists {Ei}∞i=1 ⊆ A

such that X =
⋃∞

i=1Ei and µ0(Ei) <∞ for all i ∈ N.
If µ0 is a premeasure onA ⊆ P(X), then it induces an outer measure µ∗ in accordance with Proposition 3.1

(∅, X ∈ A by Proposition 1.1) given by

µ∗(E) = inf


∞∑
j=1

µ0 (Aj) : Aj ∈ A, E ⊆
∞⋃
j=1

Aj

 for any E ⊆ X. (3.4)

Proposition 3.2. If µ0 is a premeasure on A and µ∗ is given by (3.4), then

1. µ∗|A = µ0;

2. every set in A is µ∗-measurable.

Proof. To prove the first part, suppose E ∈ A, E ⊆
⋃∞

j=1Aj with Aj ∈ A and Bn
.
= E ∩ (An \

⋃n
j=1Aj).

Then, Bn’s are disjoint members of A whose union is E ∈ A, hence by the definition of a premeasure and
Lemma 3.1,

µ0(E) =

∞∑
j=1

µ0(Bj) ≤
∞∑
j=1

µ0(Aj);

taking the infimum with respect to {Aj}∞j=1 ⊆ A such that E ⊆
⋃∞

j=1Aj , we obtain µ0(E) ≤ µ∗(E). On
the other hand, taking A1 = E and Aj = ∅ for all j ≥ 2, we have the reverse inequality µ∗(E) ≤ µ0(E),
meaning that µ∗(E) = µ0(E) for all E ∈ A.
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Next, let E ⊆ X and ε > 0. Then, by the property (3.1) of the infimum, there exists {Bj}∞j=1 ⊆ A such

that E ⊆
⋃∞

j=1Bj and
∑∞

j=1 µ0(Bj) ≤ µ∗(E) + ε. Since µ0 is additive on A, we have for any A ∈ A

µ∗(E) + ε ≥
∞∑
j=1

µ0(Bj) =

∞∑
j=1

µ0(Bj ∩A) +
∞∑
j=1

µ0(Bj ∩Ac) ≥ µ∗(E ∩A) + µ∗(E ∩Ac),

where the last inequality holds since
⋃∞

j=1Bj ∩A ⊇ E ∩A and
⋃∞

j=1Bj ∩Ac ⊇ E ∩Ac. Since ε is arbitrary,
limiting ε→ 0 proves that A is µ∗-measurable.

Theorem 3.2. Let A ⊆ P(X) be an algebra, µ0 a premeasure on A, and M
.
= σ(A).

1. There exists a measure µ on M whose restriction is µ0, namely, µ = µ∗|M, where µ∗ is given by (3.4).

2. If ν is another measure that extends µ0, then ν(E) ≤ µ(E) for all E ∈ M, with equality when µ(E) <∞.

3. If µ0 is σ-finite, then µ is the unique extension of µ0 to a measure on M.

Proof. Let M∗ be the collection of all µ∗-measurable sets. Then, by Carathéodory’s Theorem, M∗ is a
σ-algebra and µ∗|M∗ is a (complete) measure on X. By Proposition 3.2, A ⊆ M∗ and hence, M ⊆ M∗ by
Lemma 1.1. Therefore, for any {Ai}∞i=1 ⊆ M disjoint,

µ

( ∞⋃
i=1

Ai

)
= µ∗|M∗

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ∗|M∗(Ai) =

∞∑
i=1

µ(Ai).

Moreover, µ(∅) = µ∗(∅) = 0 is obvious by the definition of an outer measure. Therefore, µ = µ∗|M is a
measure on M. Furthermore, µ|A = µ0 by Proposition 3.2.

Next, suppose there exists another measure ν on M such that ν|A = µ0. Then, µ(A) = ν(A) = µ0(A)
for any A ∈ A. Hence, for any E ∈ M and {Ai}∞i=1 ⊆ A such that E ⊆

⋃∞
i=1Ai,

ν(E) ≤
∞∑
i=1

ν(Ai) =

∞∑
i=1

µ(Ai)

by monotonicity of a measure ν (Theorem 2.1a); taking the infimum for all such sets {Ai ∈ A}∞i=1 yields
ν(E) ≤ µ(E). Moreover, by Corollary 2.1 and

⋃n
i=1Ai ∈ A for any n,

µ

( ∞⋃
i=1

Ai

)
= lim

n→∞
µ

( n⋃
i=1

Ai

)
= lim

n→∞
ν

( n⋃
i=1

Ai

)
= ν

( ∞⋃
i=1

Ai

)
. (3.5)

Now, suppose µ(E) < ∞ for E ∈ M. Then, by the property (3.1) of the infimum and the definition (3.4),
for each ε > 0, there exists {Ai}∞i=1 ⊆ A such that E ⊆

⋃∞
i=1Ai and

∑∞
i=1 µ0(Ai) ≤ µ(E) + ε; since

µ0(Ai) = µ(Ai) for all Ai ∈ A and µ is a measure on M (= σ(A)), we have µ(A) ≤ µ(E) + ε, where
A
.
=
⋃∞

i=1Ai. Hence, µ(A \ E) ≤ ε by subtractivity of a measure µ (Theorem 2.1a). Finally, we establish

µ(E) ≤ µ(A) = ν(A) = ν(A) + ν(A \ E) ≤ ν(E) + µ(A \ E) ≤ ν(E) + ε.

To each (in)equality from left to right, we applied monotonicity (Theorem 2.1a), (3.5), subadditivity (The-
orem 2.1a), ν(F ) ≤ µ(F ) for F = A \ E ∈ M, and µ(A \ E) ≤ ε. Since ε is arbitrary, limiting ε → 0 proves
µ(E) ≤ ν(E) for all E ∈ M such that µ(E) <∞. As we already have ν(E) ≤ µ(E) for any E ∈ M, it is now
obvious that µ(E) = ν(E) for E ∈ M such that µ(E) <∞.

Finally, suppose µ0 is σ-finite, so that X =
⋃∞

i=1Ai for {Ai ∈ A}∞i=1 such that µ0(Ai) < ∞ for each i.
Here, we assume that {Ai} is disjoint without loss of generality.1 Since µ(Ai) = ν(Ai) = µ0(Ai) < ∞,
we have by monotonicity (Theorem 2.1a) µ(Ai ∩ E) ≤ µ(Ai) < ∞ and ν(Ai ∩ E) ≤ ν(Ai) < ∞ and thus
µ(Ai ∩ E) = ν(Ai ∩ E), for any E ∈ M. Therefore, for any E ∈ M,

µ(E) =

∞∑
i=1

µ(E ∩Ai) =

∞∑
i=1

ν(E ∩Ai) = ν(E),

that is, µ = ν — µ is the unique extension of µ0 to a measure on M.

1otherwise, proceed with {Bi} in place of {Ai}, where B1
.
= A1 and Bi

.
= Ai \

⋃i−1
j=1 Aj for all i. Obviously, Bi ∈ A for

each i, X =
⋃∞

i=1 Bi, and {Bi}∞i=1 is disjoint.
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Note that in Theorem 3.2, generally M ⊆ M∗, and µ is not complete unless M = M∗, where M∗ is the
σ-algebra of all µ∗-measurable sets as in the proof of Theorem 3.2. Moreover, the measure µ constructed by
Theorem 3.2 is σ-finite if so is µ0, so that there exists {Ei ∈ A}∞i=1 such that X =

⋃∞
i=1Ei and µ0(Ei) <∞

for all i — obviously, µ(Ei) = µ0(Ei) < ∞ by Proposition 3.4 and the σ-finiteness of µ follows. The next
theorem provides a way to construct the completion of this σ-finite measure µ (and any σ-finite measure)
using the outer measure similar to (3.4) and in a similar manner to the unique construction of the σ-finite
measure µ from a σ-finite premeasure described above.

Theorem 3.3. Let (X,M, µ) be a σ-finite measure space, µ∗ the outer measure induced by µ according to
(3.4), that is,

µ∗(E) = inf


∞∑
j=1

µ (Aj) : Aj ∈ M, E ⊆
∞⋃
j=1

Aj

 for any E ⊆ X, (3.6)

and M∗ the σ-algebra of µ∗-measurable sets. Then, µ = µ∗|M∗ is the completion of µ.

3.2 Borel and Lebesgue-Stieltjes Measures on R

3.3 Measures and Integrations over a Product Space

Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces. Recall that a (measurable) rectangle is a set of the
form M ×N for M ∈ M and N ∈ N; by Corollary 1.5, the product σ-algebra M⊗N on X × Y corresponds
to the σ-algebra generated by the set of all rectangles, i.e.,

M⊗N = σ
({
M ×N :M ∈ M, N ∈ N

})
. (3.7)

Let A be the collection of finite disjoint unions of rectangles. Then, by Corollary 1.5 again, A is an algebra,
and the σ-algebra it generates corresponds to M⊗N, i.e., M⊗N = σ(A).

In this section, we construct a measure, called the product measure denoted by µ × ν on the product
space (X × Y,M⊗N), with the special property:

µ× ν (M ×N) = µ(M) · ν(N) for all rectangles M ×N. (3.8)

Suppose M ×N is a rectangle that is a finite or countable disjoint union of the rectangles Mi ×Ni. Then,
for x ∈ X and y ∈ Y , the indicator functions satisfy:

1M (x) · 1N (y) = 1M×N (x, y) =
∑

i 1Mi×Ni
(x, y) =

∑
i 1Mi

(x) · 1Ni
(y)

Integrating 1M (x) · 1N (y) with respect to µ(x) and use the linearity of the integral, we obtain

µ(M) · 1N (y) =

∫
1M (x) · 1N (y) dµ(x) =

∑
i

∫
1Mi(x) · 1Ni(y) dµ(x) =

∑
i

µ(Mi) · 1Ni(y);

integrating it with respect to ν(y) and using linearity again, we have

µ(M) · ν(N) =

∫
µ(M) · 1N (y) dν(y) =

∑
i µ(Mi)

∫
1Ni

(y) dν(y)

=
∑

i µ(Mi) · ν(Ni). (3.9)

Since the algebra A is the set of all disjoint unions of rectangles, for each E ∈ A, there exists a finite collection
of disjoint rectangles {Mi ×Ni : Mi ∈ M, Ni ∈ N}ni=1 such that E =

⋃n
i=1Mi ×Ni. With the convention

0 · ∞ = 0, set

π(E)
.
=

n∑
i=1

µ(Mi)ν(Ni). (3.10)
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Proposition 3.3. π given by (3.10) is well-defined. That is, if {Aj ×Bj : Aj ∈ M. Bj ∈ N}mj=1 is another

sequence of disjoint rectangles on X × Y such that E =
⋃m

j=1Aj ×Bj, then

π(E) =

m∑
j=1

µ(Aj)·ν(Bj) =

n∑
i=1

µ(Ei)·ν(Fi).

Moreover, π is a premeasure on A.

Proof. Since Mi ×Ni and Aj ×Bj are rectangles and satisfy

Mi ×Ni =

m⋃
j=1

(Mi ×Ni) ∩ (Aj ×Bj) =

m⋃
j=1

(Mi ∩Aj)× (Ni ∩Bj)

Aj ×Bj =

n⋃
i=1

(Mi ×Ni) ∩ (Aj ×Bj) =

n⋃
i=1

(Mi ∩Aj)× (Ni ∩Bj)

where {(Mi ∩Aj)× (Ni ∩Bj)}i,j is disjoint (∵ so are {Mi ×Ni}i and {Aj ×Bj}j), we obtain by (3.9)

π(E) =

m∑
j=1

µ(Aj)·ν(Bj) =

m∑
j=1

n∑
i=1

µ(Mi ∩Aj) · ν(Ni ∩Bj)

π(E) =

n∑
i=1

µ(Ei)·ν(Fi) =

n∑
i=1

m∑
j=1

µ(Mi ∩Aj) · ν(Ni ∩Bj) =

m∑
j=1

n∑
i=1

µ(Mi ∩Aj) · ν(Ni ∩Bj),

and hence π is well-defined.
Next, as ∅ = ∅ × ∅ is a rectangle (∅ ∈ M, ∅ ∈ N), it is obvious that π(∅) = µ(∅) · ν(∅) = 0.

To show the countable additivity, suppose that {Ei ∈ A}∞i=1 is disjoint and satisfies E
.
=
⋃∞

i=1Ei ∈ A.
Then, for each i, there exists a sequence of disjoint rectangles {Mi,j × Ni,j : Mi,j ∈ M, Ni,j ∈ N}ni

j=1

such that Ei =
⋃ni

j=1Ni,j × Mi,j , hence π(Ei) =
∑ni

j=1 µ(Ni,j) · ν(Mi,j). Moreover, by E ∈ A, there is

a sequence of disjoint rectangles {Ak × Bk : Ak ∈ M, Bk ∈ N}mk=1 such that E =
⋃m

k=1Ak × Bk, hence
π(E) =

∑m
k=1 µ(Ak) · ν(Bk). Since the rectangles Ak ×Bk and Mi,j ×Ni,j satisfy

Ak ×Bk = (Ak ×Bk) ∩ E =

∞⋃
i=1

ni⋃
j=1

(Ak ×Bk) ∩ (Mi,j ×Ni,j) =

∞⋃
i=1

ni⋃
j=1

(Ak ∩Mi,j)× (Bk ∩Ni,j)

Mi,j ×Ni,j = E ∩ (Mi,j ×Ni,j) =

m⋃
k=1

(Ak ×Bk) ∩ (Mi,j ×Ni,j) =

m⋃
k=1

(Ak ∩Mi,j)× (Bk ∩Ni,j),

where {(Ak ∩Mi,j)× (Bk ∩Ni,j)}i,j,k is a disjoint sequence of rectangles, we finally obtain by (3.9) that

π(E) =

m∑
k=1

µ(Ak) · ν(Bk) =

m∑
k=1

( ∞∑
i=1

ni∑
j=1

µ(Ak ∩Mi,j) · ν(Bk ∩Ni,j)

)

=

∞∑
i=1

ni∑
j=1

( m∑
k=1

µ(Ak ∩Mi,j) · ν(Bk ∩Ni,j)

)
=

∞∑
i=1

ni∑
j=1

µ(Mi,j) · ν(Ni,j) =

∞∑
i=1

π(Ei),

hence π is countably additive and thereby a premeasure on A.

By Proposition 3.3 and Theorem 3.2, the premeasure π generates an outer measure π∗:

π∗(E) = inf

{ ∞∑
i=1

π (Ai) : Ai ∈ A, E ⊆
∞⋃
i=1

Ai

}
for any E ⊆ X × Y,

whose restriction to the product σ-algebra M ⊗ N is a measure that extends π. We call this measure the
product of µ and ν and denote it by µ × ν. By its construction, the product measure µ × ν satisfies (3.8).
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Moreover, since µ and ν are σ-finite, there exist {Ai ∈ M}∞i=1 and {Bj ∈ N}∞j=1 such that X =
⋃∞

i=1Ai and

Y =
⋃∞

j=1Bj with µ(Ai) <∞ and ν(Bj) <∞ for all i, j — then X × Y =
⋃

i,j Ai ×Bj and since Ai ×Bj

is a rectangle, µ × ν(Ai × Bj) = µ(Ai) · ν(Bj) < ∞, meaning that the product µ × ν is also σ-finite; by
Theorem 3.2, µ× ν is the unique extension on M⊗N that satisfies (3.8).

Now, we consider the x-section Ex and y-section Ey of E ⊆ X × Y defined as

Ex
.
=
{
y ∈ Y : (x, y) ∈ E

}
and Ey .

=
{
x ∈ X : (x, y) ∈ E

}
.

Similarly, we define the x-section fx and y-section fy of a function f on X × Y as

fx(y) = fy(x) = f(x, y) ∀(x, y) ∈ X × Y.

Note that:

1. if E ∈ M⊗N, then Ex ∈ N for all x ∈ X and Ey ∈ M for all y ∈ Y (Proposition 1.11);

2. if E,F ∈ M⊗N, then (E ∩ F )x = Ex ∩ Fx and (E ∩ F )y = Ey ∩ F y since, e.g., for the former,

(E ∩ F )x = {y ∈ Y : (x, y) ∈ E ∩ F}
= {y ∈ Y : (x, y) ∈ E and (x, y) ∈ F}
= {y ∈ Y : (x, y) ∈ E} ∩ {y ∈ Y : (x, y) ∈ F} = Ex ∩ Fy.

Similarly, (E ∪F )x = Ex ∪Fx and (E ∪F )y = Ey ∪F y (note: (x, y) ∈ E ∪F ⇐⇒ (x, y) ∈ E or ∈ F ).

3. For an indicator function 1E (E ∈ M⊗N), (1E)x = 1Ex and (1E)
y = 1Ey

4. if f is (M⊗N,O)-measurable, then fx is (N,O)-measurable for all x ∈ X and fy is (M,O)-measurable
for all y ∈ Y (Proposition 1.12).

Theorem 3.4. If E ∈ M⊗N, then the functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable on X and Y ,
respectively, and

µ× ν(E) =

∫
ν(Ex) dµ(x) =

∫
µ(Ey) dν(y). (3.11)

Proof. (when µ and ν are finite) Let C =
{
E ∈ M⊗N : the conclusions of the theorem hold on E

}
. Then,

by its construction, we have C ⊆ M ⊗ N, hence the proof is complete if M ⊗ N ⊆ C. First, we show that
{M ×N :M ∈ M, N ∈ N} ⊆ C. Let E =M ×N for M ∈ M and N ∈ N. Then, since

Ex =

{
N for x ∈M

∅ for x ̸∈M
and Ey =

{
∅ for y ̸∈ N

M for y ∈ N,

we have ν(Ex) = ν(N) · 1M (x) and µ(Ey) = µ(M) · 1N (y), hence the maps x 7→ ν(Ex) and y 7→ µ(Ey) are
measurable by Proposition 1.25 (note that ν(N) <∞ and µ(M) <∞ as the measures are finite). Moreover,
by Theorem 2.4,∫

ν(Ex) dµ(x) = ν(N) ·
∫

1M dµ = ν(N) · µ(M), and

∫
µ(Ey) dν(y) = µ(M) ·

∫
1N dν = µ(M) · ν(N),

where µ(M) ·ν(N) = µ×ν(M ×N) (∵M ∈ M and N ∈ N). Therefore, E ∈ C, meaning that {M ×N :M ∈
M, N ∈ N} ⊆ C. Moreover, the collection A of disjoint unions of rectangles is an algebra by Corollary 1.5.
Let {Ei}ni=1 be a disjoint sequence of rectangles such that E =

⋃n
i=1Ei for E ∈ A and denote Ei =Mi ×Ni

for some Mi ∈ M and Ni ∈ N. If x ∈Mi ∩Mj , then (Ei)x = Ni and (Ej)x = Nj , where Ni and Nj must be
disjoint as Ei and Ej are disjoint. Moreover, it is obvious that (Ei)x = ∅ whenever x ̸∈ Mi, hence the set
{(Ei)x}ni=1 is disjoint. Since Ex =

⋃n
i=1(Ei)x (see the proof of Proposition 1.11), we finally obtain

ν(Ex) =

n∑
i=1

ν((Ei)x) and likewise, µ(Ey) =

n∑
i=1

µ((Ei)
y), (3.12)
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where Ei’s are all rectangles. Therefore, the maps x 7→ µ(Ex) and y 7→ µ(Ey) are also measurable for any
E ∈ A. Moreover, as (3.12) implies ν(Ex) =

∑n
i=1 ν(Ni) · 1Mi(x) and µ(Ey) =

∑n
i=1 µ(Mi) · 1Ni

(y), we
obtain:

µ× ν(E) =

n∑
i=1

µ× ν(Ei) =



n∑
i=1

∫
ν(Ni) · 1Mi

(x) dµ(x) =

∫
ν(Ex) dµ(x)

n∑
i=1

∫
µ(Mi) · 1Ni

(y) dν(y) =

∫
µ(Ey) dν(y),

from which we conclude that E ∈ C, that is, A ⊆ C.
The remaining process is to show that C is a monotone class. Let {En}∞n=1 be an increasing sequence in

C and E =
⋃∞

n=1En. Then, fn(y) := µ((En)
y) is measurable by the definition of C and pointwise increases

to f(y) := µ(Ey) by Theorem 2.1a and 2.1c. Hence, f is measurable by Proposition 1.26 and by the MCT
(Theorem 2.3),∫

µ(Ey) dν(y) =

∫
f dν = lim

n→∞

∫
fn dν = lim

n→∞

∫
µ((En)

y) dν(y) = lim
n→∞

µ× ν(En) = µ× ν(E),

where the last equality comes from the application of Theorem 2.1c for the measure µ × ν. Likewise, we
also have µ × ν(E) =

∫
ν(Ex) dµ(x), hence E ∈ C. Similarly, if {En}∞n=1 is a decreasing sequence in C

and E =
⋂∞

n=1En, then gn(y) := µ((En)
y) for each n is measurable by the definition of C and, since

µ((En)
y) ≤ µ(X), uniformly bounded (by µ(X) < ∞) for all n. Moreover, since µ((E1)

y) ≤ µ(X) < ∞,
gn(y) pointwise decreases to g(y) := µ((En)

y) by Theorem 2.1a and 2.1d. Therefore, by the bounded
convergence theorem (Corollary 2.11) and ν(Y ) <∞, we have g ∈ L1(ν) and limn→∞

∫
gn dν =

∫
g dν, that

is, µ × ν(E) =
∫
µ(Ey) dν(y) as above and likewise, µ × ν(E) =

∫
ν(Ex) dµ(x). Therefore, E ∈ C and thus

C is a monotone class.
Since C is a monotone class, A ⊆ C, and σ(A) = M ⊗ N, applying the monotone class theorem (Theo-

rem B.1) and Lemma B.1 results in M⊗N = σ(A) = c(A) ⊆ C.

(when µ and ν are σ-finite) In this case, we can write X × Y as a union of an increasing sequence
{Xi × Yi}∞i=1 of rectangles, that is,

X × Y =

∞⋃
i=1

Xi × Yi with Xi × Yi ⊆ Xi+1 × Yi+1, Xi ∈ M, Yi ∈ N, for all i ∈ N,

which implies that Xi ⊆ Xi+1 and Yi ⊆ Yi+1 for all i as well as X =
⋃∞

i=1Xi and Y =
⋃∞

i=1 Yi.
For E ∈ M⊗N, since

(E ∩ (Xi × Yi))x = Ex ∩ (Xi × Yi)x = (X × Ex)x ∩ (Xi × Yi)x = ((X × Ex) ∩ (Xi × Yi))x

= ((Xi × (Ex ∩ Yi))x,

applying the preceding argument to E ∩ (Xj × Yj) results in

µ× ν(E ∩ (Xi × Yi)) =

∫
ν((E ∩ (Xi × Yi))x) dµ(x) =

∫
ν((Xi × (Ex ∩ Yi))x) dµ(x)

=

∫
1Xi(x) · ν(Ex ∩ Yi)) dµ(x).

Therefore, by the monotone convergence theorem (Theorem 2.3) and Theorem 2.1c, we obtain

µ(E) = µ(E ∩ (X × Y )) = lim
i→∞

µ× ν(E ∩ (Xi × Yi)) =

∫
lim
i→∞

1Xi
(x) · ν(Ex ∩ Yi) dµ(x) =

∫
ν(Ex) dµ(x).

Likewise, µ × ν(E) =
∫
µ(Ey) dν(y). Here, the measurability of x 7→ ν(Ex) and y 7→ ν(Ey) is ensured by

Proposition 1.26.
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Theorem 3.5 (The Fubini-Tonelli Theorem). Suppose (X,M, µ) and (Y,N, ν) are σ-finite measure spaces.

1. (Tonelli) If f ∈ L+(X × Y ), then the functions g(x) =

∫
fxd ν and h(x) =

∫
fy dµ belong to L+(X)

and L+(Y ), respectively, and∫
f d(µ× ν) =

∫ [ ∫
f(x, y) dν(y)

]
dµ(x) =

∫ [ ∫
f(x, y) dµ(x)

]
dν(y) (3.13)

2. (Fubini) If f ∈ L1(X×Y ), then fx ∈ L1(ν) for a.e. x ∈ X, fy ∈ L1(µ) for a.e. y ∈ Y , the a.e.-defined

functions g(x) =

∫
fxd ν and h(x) =

∫
fy dµ are in L1(µ) and L1(ν), respectively, and (3.13) holds.

Proof. The Tonelli’s theorem reduces to Theorem 3.4 in case f is an indicator function and thus by the
linearity of the integral (e.g., Proposition 2.5), it holds for nonnegative simple functions. For example, if
f = 1E for E ∈ M⊗N, then

g(x) =

∫
(1E)x dν =

∫
1Ex

dν = ν(Ex), h(y) =

∫
(1E)

y dµ =

∫
1Ey dµ = µ(Ey),

and by Theorem 3.4,

∫
1E(x, y) =


∫
ν(Ex) dµ(x) =

∫ [ ∫
1E(x, y) dν(y)

]
dµ(x),∫

ν(Ex) dµ(x) =

∫ [ ∫
1E(x, y) dν(y)

]
dµ(x).

If f ∈ L+(X × Y ), then there exists a sequence {fn} of nonnegative simple functions that increases
pointwise to f by Theorem 1.1. Then, the MCT (Theorem 2.3) implies:

1. the corresponding gn and hn pointwise increase g and h as shown below: by Proposition 2.5,

gn =

∫
(fn)x dν ≤

∫
(fn+1)x dν = gn+1 and thus lim

n→∞
gn =

∫
lim
n→∞

(fn)x dν =

∫
fx dν = g,

hn =

∫
(fn)

y dµ ≤
∫
(fn+1)

y dµ = gn+1 and thus lim
n→∞

hn =

∫
lim

n→∞
(fn)

y dν =

∫
fy dµ = h

(so that g and h are measurable by Proposition 1.26);

2. (3.13) holds as shown below:∫
g dµ = lim

n→∞

∫
gn dµ = lim

n→∞

∫
fn d(µ× ν) =

∫
f d(µ× ν),∫

h dν = lim
n→∞

∫
hn dν = lim

n→∞

∫
fn d(µ× ν) =

∫
f d(µ× ν).

This proves the Tonelli’s Theorem and also shows that if f ∈ L+(X × Y ) and
∫
f d(µ × ν) < ∞, then

g < ∞ and h < ∞ a.e. by Proposition 2.10. That is, fx ∈ L1(ν) for a.e. x and fy ∈ L1(µ) for a.e. y.
On the other hand, if f ∈ L1(µ × ν), then it is equivalent to the existence of f+, f− ∈ L+(X × Y ) s.t.
f = f+− f− and

∫
f+ d(µ× ν) <∞ and

∫
f− d(µ× ν) <∞ by Definition 2.1 and Corollary 1.11. Therefore,

the proof of Fubini’s theorem can be done by applying the above results to f+ and f− and combine them
using f = f+ − f−.

Remark 3.1. Even if µ and ν are complete, µ × ν is almost never complete. For example, suppose that
there is a non-empty A ∈ M with µ(A) = 0 and that N ̸= P(Y ) (e.g., µ = ν = the Lebesgue measure on R).
If E = P \N, then A×E ̸∈ M⊗N by the contraposition of Proposition 1.11: for E ⊆ X × Y , if Ex ̸∈ N for
some x or Ey ̸∈ M for some y, then E ̸∈ M⊗N. However, A×E ⊂ A× Y and µ× ν(A× Y ) = 0. For an
extension of the Tonelli-Fubini’s theorem to a completion of µ× ν, see (Folland, 1999).
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3.4 Modes of Convergence

Proposition 3.4. If fn → f in L1, then fn → f in measure.

Proof. Given ϵ > 0, let En,ϵ =
{
x ∈ X :

∣∣fn(x)− f(x)
∣∣ ≥ 0

}
=
∣∣fn − f

∣∣−1
([ϵ,∞)). Then,

∞ >

∫
X

∣∣fn − f
∣∣ ≥ ∫

En,ϵ

∣∣fn − f
∣∣ ≥ ϵ · µ(En,ϵ).

Therefore, µ(En,ϵ) ≤ ϵ−1 ·
∫
X

∣∣fn − f
∣∣→ 0 as n→ ∞.

Theorem 3.6.

1. If {fn} is Cauchy in measure, then there exists a measurable function f such that fn → f in measure.

2. If fn → f in measure, then there exists a subsequence {fnj
} that converges to f a.e.

3. If fn → f and fn → g both in measure, then f = g a.e.

Proof of Theorem 2.30 with Borel-Cantalli Lemma

3.5 Lp Spaces

3.6 Signed Measures and their Decompositions

A signed measure on a measurable space (X,M) is a function ν : M → [−∞,∞] s.t.

1. ν(∅) = 0;

2. ν assumes at most one of the values ±∞, i.e., either −∞ < inf
E∈M

ν(E) or sup
E∈M

ν(E) <∞ must be true;

3. if {Ei}∞i=1 ⊆ M is disjoint, then ν
(⋃∞

i=1Ei

)
=
∑∞

i=1 ν(Ei), where the latter sum converges absolutely
if finite, that is, ∣∣∣∣ ∞∑

i=1

ν(Ei)

∣∣∣∣ <∞ =⇒
∞∑
i=1

∣∣ν(Ei)
∣∣ <∞. (3.14)

Note that the converse of (3.14) is also true as any absolutely convergent infinite sum of a real sequence always
converges. Here, the absolute convergence condition (3.14) is required to well-define a signed measure ν—if
the sum is merely conditionally convergent (so that the precondition in (3.14) is still valid), then by Riemann’s
rearrangement theorem, there exist permutations σ1 and σ2 s.t. ν

(⋃∞
i=1Eσ1(i)

)
=
∑∞

i=1 ν(Eσ1(i)) = ∞ and

ν
(⋃∞

i=1Eσ2(i)

)
=
∑∞

i=1 ν(Eσ2(i)) = −∞ (already violating the second requirement of the definition), whereas

ν
(⋃∞

i=1Eσ1(i)

)
= ν

(⋃∞
i=1Eσ2(i)

)
= ν

(⋃∞
i=1Ei

)
=
∑∞

i=1 ν(Ei),

where the last sum is finite by conditional convergence.

3.7 Lebesgue-Radon-Nikodym Theorem



Chapter 4

Lebesgue Measure, Integral, and
Differentiation

4.1 Motivations

4.2 Lebesgue Measure and Integral

4.3 Lebesgue Differentiation on Euclidean Space

4.4 Functions of Bounded Variations
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Chapter 5

Stochastic Processes

5.1 Fundamentals in Probability

the second Borel-Cantalli Lemma...

5.2 Itô Integrals

Definition 5.1. Let V .
= V(S, T ) be a class of functions

f(t, w) : [0,∞)× Ω → R

such that

1. f is B × F-measurable, where B .
= B[0,∞) is the Borel σ-algebra on [0,∞);

2. f is Ft-adapted;

3. E
[ ∫ S

T
f2(t, w) dt

]
<∞.

Lemma 5.1. Let g ∈ V be bounded and g(·, w) is continuous for each w ∈ Ω. Then, there exists a sequence
of elementary functions {ϕn ∈ V} such that

E
[ ∫ S

T

(g(t, w)− ϕn(t, w))
2 dt

]
→ 0 as n→ ∞.

Proof.
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Appendix A

Elementary Family

An elementary family, defined below, plays a role in constructing an algebra which is the domain of a
premeasure and also used in the monotone class lemma in Appendix B.

Definition A.1. A non-empty family E ⊆ P(X) is said to be an elementary family of X iff

1. ϕ ∈ E;

2. if E, F ∈ E, then E ∩ F ∈ E;

3. if E ∈ E, then Ec is a finite disjoint union of members of E.

By the first and the third properties, X is a finite disjoint union of members of an elementary family of X.
In the following, we show that the family of finite disjoint union of an elementary family forms an algebra.

Proposition A.1. If E is an elementary family of X, then the family A of all finite disjoint unions of
members of E is an algebra on X.

Proof. Let A1, · · · , An ∈ E and Ac
n =

⋃m
k=1Bk for some disjoint Bk ∈ E . Then, for j ∈ {1, 2, · · · , n},

Aj \An = Aj ∩Ac
n =

m⋃
k=1

(Aj ∩Bk) ∈ A (∵ Aj ∩Bk ∈ E and {Aj ∩Bk}mk=1 is disjoint.).

This implies
⋃n

j=1Aj = An ∪
(⋃n−1

j=1 (Aj \ An)
)

∈ A. To show that A is closed under complements, let

Ac
j =

⋃mj

k=1Bj,k for j ∈ {1, 2, · · · , n}, where Bj,1, Bj,2, · · · , Bj,mj
are disjoint members of E . Then,( n⋃

j=1

Aj

)c

=

n⋂
j=1

( mj⋃
k=1

Bj,k

)
=
⋃{

B1,k1 ∩ · · · ∩Bn,kn︸ ︷︷ ︸
∈E

: 1 ≤ kj ≤ mj , 1 ≤ j ≤ n
}
∈ A

by the set operations over a finite number of sets, which completes the proof.
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Appendix B

The Montone Class Theorem

A technical concept, related to Tonelli-Fubini’s Theorem, is a monotone class C ⊆ P(X), which is a collection
of subsets of X that is closed under countable unions and countable decreasing intersections, i.e.,

1. {Ei}∞i=1 ⊆ C and E1 ⊆ E2 ⊆ E3 · · · =⇒
⋃∞

i=1Ei ∈ C, (B.1)

2. {Ei}∞i=1 ⊆ C and E1 ⊇ E2 ⊇ E3 · · · =⇒
⋂∞

i=1Ei ∈ C.

A σ-algebra is closed under countable unions and intersections by its definition and Proposition 1.1 and thus
a monotone class, but not vice versa.

Proposition B.1. Let {Cα}α∈A be a family of monotone classes on X. Then, C =
⋂

α∈A Cα is a monotone
class on X.

Proof. Assume {Ei}∞i=1 ⊆ C and E1 ⊆ E2 ⊆ E3 ⊆ · · · . Then, Ei ∈ C implies that Ei ∈ Cα for all α ∈ A.
Since Cα is a monotone class and {Ei}∞i=1 is increasing, we obtain

⋃∞
i=1Ei ∈ Cα for all α ∈ A, implying that⋃∞

i=1Ei ∈ C. Similarly, for {Ei}∞i=1 ⊆ C such that E1 ⊇ E2 ⊇ E3 ⊇ · · · , one can also show that
⋂∞

i=1Ei

belongs to Cα for all α ∈ A and thus C. Hence, C is a monotone class.

Definition B.1. For any family E ⊆ P(X), c(E) denotes the smallest monotone class on X that contains
E; we call c(E) the monotone class generated by E.

Remark B.1. Since the largest σ-algebra P(X) is also the largest monotone class on X, there is at least one
monotone class P(X) that contains E. Moreover, since any (uncountable) intersection of monotone classes
is also a monotone class as shown in Proposition B.1, the smallest monotone class c(E) in Definition B.1
can be constructed and recognized as the intersection of all monotone classes containing E, similarly to the
σ-algebra cases.

By Proposition B.1, the following lemma is obvious.

Lemma B.1. If E ⊆ C, then c(E) ⊆ C.

The next lemma shows that σ-algebra and monotone class both generated by an algebra coincide.

Theorem B.1 (The Monotone Class Theorem). If A is an algebra on X, then σ(A) = c(A).

Proof. Since any σ-algebra is a monotone class, σ(A) is a monotone class and hence, σ(A) ⊇ c(A). Next, if
we show that c(A) is a σ-algebra on X, then we have σ(A) ⊆ c(A) and hence σ(A) = c(A). To show that
c(A) is a σ-algebra on X, first note that by ϕ,X ∈ A (Proposition 1.1) and A ⊆ c(A), we have ϕ,X ∈ c(A).
Next, for E ∈ c(A), define

C(E)
.
=
{
F ∈ c(A) : E \ F , F \ E, and E ∩ F are all in c(A)

}
.

Then, we see that ϕ,E ∈ C(E) and that

∀E,F ∈ c(A) : F ∈ C(E) ⇐⇒ E ∈ C(F ). (B.2)
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Moreover, for {Fj ∈ C(E)}∞i=1 such that Fj ⊆ Fj+1 ∀i ∈ N, we have
⋃∞

i=1 Fj ∈ c(A) and furthermore, since
E \ Fj ⊇ E \ Fj+1, Fj \ E ⊆ Fj+1 \ E, and E ∩ Fj ⊆ E ∩ Fj+1 for all i ∈ N and all the sets belong to the
monotone class c(A), we have

E \
( ∞⋃

i=1

Fj

)
= E ∩

( ∞⋂
i=1

F c
j

)
=

∞⋂
i=1

(E ∩ F c
j ) =

∞⋂
i=1

E \ Fj ∈ c(A),

( ∞⋃
i=1

Fj

)
\ E =

( ∞⋃
i=1

Fj

)
∩ Ec =

∞⋃
i=1

(Fj ∩ Ec) =

∞⋃
i=1

Fj \ E ∈ c(A),

E ∩
( ∞⋃

i=1

Fj

)
=

∞⋃
i=1

(E ∩ Fj) ∈ c(A).

Hence,
⋃∞

i=1 Fj ∈ C(E). Similarly, one can show for a decreasing sequence {Fj ∈ C(E)} that
⋂∞

i=1 Fj ∈ C(E).
Therefore, C(E) is a monotone class. Moreover, since A is an algebra, E ∈ A implies F ∈ C(E) for all F ∈ A
by the definition of C(E) and Proposition 1.1. That is, A ⊆ C(E) and by Lemma B.1, c(A) ⊆ C(E) for any
E ∈ A. That is, for any F ∈ c(A) and E ∈ A, we have F ∈ C(E), which in turn implies E ∈ C(F ) by
(B.2). Therefore, we further obtain A ⊆ C(F ) for any F ∈ c(A), and by Lemma B.1, c(A) ⊆ C(F ) for any
F ∈ c(A). Conclusions: if E,F ∈ c(A), then both E \ F and E ∩ F also belong to c(A). Since ϕ,X ∈ c(A),
we can prove that c(A) is an algebra by checking that it is closed under complements and finite unions:

1) E ∈ c(A) =⇒ Ec = X \ E ∈ c(A),

2) {Ei}Nj=1 ⊆ c(A) =⇒
N⋃
j=1

Ei =

( N⋂
j=1

Ec
i

)c

∈ c(A),

where the second property is deduced from the first and E ∩ F ∈ c(A) for E,F ∈ c(A). Therefore, for any

{Ei}j∈N ⊆ c(A), we have
⋃N

j=1Ei ∈ c(A) for all N ∈ N, where
{⋃N

j=1Ei

}∞
N=1

is an increasing sequence in

c(A). Therefore, since c(A) is also a monotone class, we have
⋃∞

i=1Ei ∈ c(A) by (B.1). That is, c(A) is a
σ-algebra and the proof is completed.


