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This note provides the detailed proof of the following theorem, which is also shown in Chapter 1.1 in

Folland’s real analysis book. In the case n = 1, the theorem justifies the fact that why the domain of the

volume function µ (a.k.a. Lebesque measure) to measure the volume of a subset of Rn has not to be the

entire family P(Rn). In real analysis, the Lebesque measure µ is defined on a subset of P(Rn) known

as the family of Lebesque measurable sets in Rn.

Theorem 1. Let µ : P(Rn)→ [0,∞] be a function such that

1) if E1, E2, · · · is a finite or infinite sequence of disjoint subsets of Rn, then

µ(E1 ∪ E2 ∪ · · · ) = µ(E1) + µ(E2) + · · · ;

2) if E ⊆ Rn is congruent to F ⊆ Rn (that is, if E can be transformed into F by translations, rotations,

and reflections), then µ(E) = µ(F );

3) µ(Q) = 1, where Q is the unit cube Q = {x ∈ Rn : 0 ≤ xj < 1 for j = 1, 2, · · · , n}.

The above three conditions are inconsistent for n = 1.

Proof. Define an equivalence relation x ∼ y by declaring x ∼ y iff x− y is rational. Let N be a subset

of [0, 1) that contains precisely one member of each equivalence class

[x] = {y ∈ R : x ∼ y} for x ∈ [0, 1)

(To find such an N , the axiom of choice must be invoked). Next, let R = Q∩ [0, 1), and for each r ∈ R,

let Nr = N
(1)
r ∪N (2)

r , where

N (1)
r = {z + r : z ∈ N ∩ [0, 1− r)}︸ ︷︷ ︸

[0,1−r)→[r,1)

⊂ [r, 1),

N (2)
r = {z + r − 1 : z ∈ N ∩ [1− r, 1)}︸ ︷︷ ︸

[1−r,1)→[0,r)

⊂ [0, r).

To obtain Nr, shift N to the right by r units and then shift the part that sticks out beyond [0, 1) one unit

to the left. Then, we have Nr ⊂ [0, 1) and the following claim.

Claim 1. Every x ∈ [0, 1) belongs to precisely one Nr.

Proof of Claim 1. Let y be the member of N that belongs to the equivalence class [x] for x ∈ [0, 1),

where [x]∩N ⊂ [0, 1). Note that either y ∈ N ∩ [0, 1− r) or y ∈ N ∩ [1− r, 1) holds for any r ∈ [0, 1)
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(∵ y ∈ N ). First, assume x ≥ y and take r = x − y ≥ 0. Then, y should belong to N ∩ [0, 1 − r), not

to N ∩ [1− r, 1), since we have

1− r = 1− x+ y > y by x < 1.

So, in this case, “y ∈ N ∩ [0, 1− r)” yields

x ∈ {x} = {y + (x− y)} = {y + r} ⊂ {z + r : z ∈ N ∩ [0, 1− r)} = N (1)
r ⊆ Nr,

and we have x ∈ Nr. Next, assume x < y and take r = x− y+1 ≥ 0. Then, we have y ∈ N ∩ [1− r, 1)

since

1− r = 1− (x− y + 1) = y − x < y by x > 0.

So, in this latter case x < y, “y ∈ N ∩ [1− r, 1)” yields

x ∈ {x} = {y + (x− y + 1)− 1} = {y + r − 1} ⊂ {z + r − 1 : z ∈ N ∪ [1− r, 1)} = N (2)
r ⊂ Nr.

Therefore, for both cases x ≥ y and x < y, we have x ∈ Nr for some r > 0.

The remaining part for the proof of the claim is to show that if x ∈ Nr ∩Ns for r, s ∈ R, then r = s.

If x ∈ Nr ∩Ns and r 6= s, then since r and s are rational, yr and ys defined, respectively, asyr = x− r or x− r + 1,

ys = x− s or x− s+ 1

are distinct elements of N that belong to the same equivalence class [x], which is impossible. So, r and

s must be equal to each other.

Now, consider the volume function µ : P(R) → [0,∞] that satisfies the above three properties 1)

through 3). Then, by 1) and 2),

µ(N) = µ(N ∩ [0, 1− r)) + µ(N ∩ [1− r, 1))

= µ({z + r : z ∈ N ∩ [0, 1− r)}︸ ︷︷ ︸
=N

(1)
r

) + µ({z + r : z ∈ N ∩ [1− r, 1)}︸ ︷︷ ︸
=N

(2)
r

)

= µ(N (1)
r ∪N (2)

r ) = µ(Nr).

for any r ∈ R. Since R is countable and [0, 1) is the disjoint union of the Nr’s (Nr, Ns ⊂ [0, 1) for any

r, s ∈ R, but Nr and Ns do not have an element in [0, 1) in common unless r = s), we have

µ([0, 1)) =
∑
r∈R

µ(Nr)
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by 1). However, by iii), we have

1 = µ([0, 1)) =
∑
r∈R

µ(Nr) =
∑
r∈R

µ(N),

where the right hand side is either 0 (if µ(N) = 0) or ∞ (if µ(N) > 0), which is impossible. Hence, no

such µ satisfying 1) through 3) exists, the completion of the proof.

Remark 1. N constructed in the proof contains one and only one rational number from [0, 1). Note that

N contains exactly one member from each equivalence class under ∼, which means that:

1) for every x ∈ [0, 1), there exists y ∈ N such that x ∼ y, i.e., such that x− y ∈ Q;

2) for every x, y ∈ N , if x ∼ y, then x = y.

In particular, we know that there exists x ∈ N such that 0 ∼ x; since this requires that −x ∈ Q, such

x is rational. On the other hand, if y ∈ N is rational, then x − y ∈ Q, hence x ∼ y, so by the second

property above, we conclude that x = y. So, N contains one and only one rational from [0, 1).


