Proofs of Some Propositions and Exercises in Chapter 1.3

Written by Jaeyoung Lee Uploaded on May, 15th, 2017

This note provides proofs of some propositions and exercises shown in "Chapter 1.3 Measures" in Folland's real analysis book.

Definition 1. A measure μ is semifinite if for each measurable set E with $\mu(E) = \infty$, there exists a measurable set F such that $F \subset E$ and $0 < \mu(F) < \infty$.

Definition 2. A measure μ is σ -finite if X is represented as a countable union of (non-empty) measurable sets X_j 's with finite measure, that is, $X = \bigcup_{j=1}^{\infty} X_j$ for $\mu(X_j) < \infty$.

Proposition (pp.25). Let (X, \mathcal{M}, μ) be a measure space. If μ is σ -finite, then it is semifinite.

Proof. Assume μ is σ -finite. Then, there is $X_j \in \mathcal{M}$ such that $X = \bigcup_{j=1}^{\infty} X_j$ and $\mu(X_j) < \infty$ for all $j \in \mathbb{N}$. Assume without loss of generality that X_j 's are disjoint and nonempty. Then, for any non-empty subset $F \in \mathcal{M}$, we have

$$F = F \cap X = F \cap \left(\bigcup_{j=1}^{\infty} X_j\right) = \bigcup_{j=1}^{\infty} F \cap X_j.$$

Assume $\mu(F) = \infty$. Then, since X_j 's are all disjoint, we obtain

$$\infty = \mu(F) = \sum_{j=1}^{\infty} \mu(F \cap X_j).$$
(1)

Here, note that since $F \cap X_j \subseteq X_j$, we have $\mu(F \cap X_j) \leq \mu(X_j) < \infty \ \forall j \in \mathbb{N}$ by monotonicity. Since $\mu(F \cap X_j) \geq 0 \ \forall j \in \mathbb{N}$, (1) implies that there is $n \in \mathbb{N}$ such that $\mu(F \cap X_n) \neq 0$. So, for such $n \in \mathbb{N}$ we have $0 < \mu(F \cap X_n) < \infty$, implying that a σ -finite measure μ is semi-finite.

Proposition (pp. 25). Let X be any nonempty set and f be any function from X to $[0, \infty]$. Define $\mu : \mathcal{P}(X) \to [0, \infty]$ as $\mu(E) = \sum_{x \in E} f(x)$ for $E \in \mathcal{P}(X)$, where $\sum_{x \in E} f(x)$ is the uncountable sum defined as

$$\sum_{x \in E} f(x) = \sup \left\{ \sum_{x \in F} f(x) : F \subseteq E, \ F \text{ is finite} \right\}$$

Then,

- 1) μ is a measure on the measurable space $(X, \mathcal{P}(X))$;
- 2) the measure μ is semi-finite iff $f(x) < \infty$ for all $x \in X$;
- 3) the measure μ is σ -finite iff μ is semi-finite and $\{x : f(x) > 0\}$ is countable.

Proof. First, let A be defined by $A := \{x \in E : f(x) > 0\}$ for $E \in \mathcal{P}(X)$. If A is uncountable, we have $\sum_{x \in E} f(x) = \infty$, and if A is countable, then $\sum_{x \in E} f(x)$ becomes a usual (infinite) series (see Proposition 0.20 in Folland's real analysis book).

- $\mu(\phi) = \sum_{x \in \phi} f(x)$ is an empty sum which is considered zero (search "empty sum" in Wikipedia).
- Let E ∈ P(X) be expressed as E = U_{j=1}[∞] E_j where E_j ∈ P(X) are disjoint subsets of E ⊆ X.
 Define A_j as A_j := {x ∈ E_j : f(x) > 0}.
 - If there is j ∈ N such that A_j is uncountable, then so is A. Therefore, we have ∑_{x∈E_j} f(x) = ∞ and ∑_{x∈E} f(x) = ∞, which yield

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{x \in E} f(x) = \infty, \quad \sum_{j=1}^{\infty} \mu(E_j) = \sum_{j=1}^{\infty} \sum_{x \in E_j} f(x) = \infty.$$

- Assume that A_j is countable for all $j \in \mathbb{N}$. Then, A is also countable so $\sum_{x \in E} f(x)$ is a usual infinite series in this case. Therefore, since E_j 's are disjoint, we have

$$\mu\bigg(\bigcup_{j=1}^{\infty} E_j\bigg) = \sum_{x \in \bigcup_{j=1}^{\infty} E_j} f(x) = \sum_{j=1}^{\infty} \sum_{x \in E_j} f(x) = \sum_{j=1}^{\infty} \mu(E_j).$$

By the above arguments, μ is a measure on the measurable space $(X, \mathcal{P}(X))$.

Second, assume $f(x) < \infty \ \forall x \in X$ and $E \in \mathcal{P}(X)$ satisfies

$$\mu(E) = \sum_{x \in E} f(x) = \infty.$$
⁽²⁾

From (2) and $f(x) < \infty$, it can be seen that there is at least one $x_j \in E$ such that $0 < f(x_j) < \infty$. Then, if we choose a finite subset $F \subset E$ that contains x_j , then obviously its subset $\{x \in F : f(x) > 0\}$ is not empty. Therefore, we have $0 < \mu(F) = \sum_{x \in F} f(x) < \infty$. That is,

$$f(x) < \infty \quad \forall x \in X \implies \mu \text{ is semi-finite.}$$

Now, assume μ is semi-finite and $f(x) = \infty$ for some $x \in X$. Then, for such x, we have $\mu(\{x\}) = \sum_{x \in \{x\}} f(x) = \infty$. However, the subsets of the singleton $\{x\}$ are just ϕ and $\{x\}$, and $\mu(\phi) = 0$ and $\mu(\{x\}) = \infty$, so there is no subset $F \subset E$ satisfying $0 < \mu(F) < \infty$ when $E = \{x\}$. That is, μ is not semi-finite, a contradiction. Therefore,

$$\mu$$
 is semi-finite $\implies f(x) < \infty \quad \forall x \in X.$

Lastly, let E_j be the disjoint subsets of X such that $X = \bigcup_{j=1}^{\infty} E_j$. Since a finite measure $(\mu(X) < \infty)$ is always σ -finite, we assume $\mu(X) = \infty$ without loss of generality.

Assume that µ is σ-finite. Then, it is semi-finite. Let E_j satisfy µ(E_j) < ∞ for all j ∈ N. Suppose {x ∈ X : f(x) > 0} is uncountable. Then, since

$$\exists j \in \mathbb{N} \text{ s.t. } \{x \in E_j : f(x) > 0\} \text{ is uncountable } \iff \bigcup_{j=1}^{\infty} \{x \in E_j : f(x) > 0\} \text{ is uncountable,}$$

and $X = \bigcup_{j=1}^{\infty} E_j$, there is $j \in \mathbb{N}$ such that $\{x \in E_j : f(x) > 0\}$ is uncountable. Therefore, by Proposition 0.20 in Folland's real analysis book, we have $\mu(E_j) = \infty$, a contradiction. So, $\{x \in X : f(x) > 0\}$ should be countable.

Assume that μ is semi-finite and A = {x ∈ X : f(x) > 0} is countable. Then, semi-finiteness implies f(x) < ∞ ∀x ∈ X, and countability implies μ(X) = ∑_{x∈X} f(x) = ∑_{j=1}[∞] f(x_j), where x_j ∈ A. If we set E_j be a subset in X that satisfies X = ⋃_{j=1}[∞] E_j and contains precisely one member x_j of A (by invoking axiom of choice), then

$$\mu(E_j) = f(x_j) + \sum_{\substack{x \in E_j \setminus \{x_j\}\\ = 0}} f(x) < \infty.$$

Therefore, even when $\mu(X) = \infty$, we have $\mu(E_j) < \infty$ for all $j \in \mathbb{N}$, so μ is σ -finite, the completion of the proof.

Exercise 9 (pp. 27). If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$$

Proof. Note that

$$\mu(E) = \mu((E \cap F) \cup (E \setminus F)) = \mu(E \cap F) + \mu(E \setminus F),$$

$$\mu(F) = \mu((F \cap E) \cup (F \setminus E)) = \mu(E \cap F) + \mu(F \setminus E).$$

From Vann diagram, we can easily see that $\mu(E \cap F) + \mu(F \setminus E) + \mu(E \cap F) = \mu(E \cup F)$. Therefore, we have $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.

Exercise 10 (pp. 27). Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for $A \in \mathcal{E}$. Then, μ_E is a measure.

Proof. First, $\mu_E(\phi) = \mu(\phi \cup E) = \mu(\phi) = 0$. Assume that $\{A_j\}_{j=1}^{\infty}$ is a sequence of disjoint sets in \mathcal{M} . Then, $A_j \cap E$ is also disjoint since $A_j \cap E \subseteq A_j$. Therefore, we have

$$\mu_E\left(\bigcup_{j=1}^{\infty} A_j\right) = \mu\left(\bigcup_{j=1}^{\infty} A_j \cap E\right) = \sum_{j=1}^{\infty} \mu(A_j \cap E) = \sum_{j=1}^{\infty} \mu_E(A_j)$$

Therefore, μ_E is also a measure on the measurable space (X, \mathcal{M}) and its restricted one (E, \mathcal{M}_E) , where

$$\mathcal{M}_E := \{ M_E \in \mathcal{M} : M_E = E \cap M \text{ for some } M \in \mathcal{M} \}.$$