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This note provides proofs of some propositions and exercises shown in “Chapter 1.3 Measures” in

Folland’s real analysis book.

Definition 1. A measure µ is semifinite if for each measurable set E with µ(E) = ∞, there exists a

measurable set F such that F ⊂ E and 0 < µ(F ) <∞.

Definition 2. A measure µ is σ-finite if X is represented as a countable union of (non-empty) measurable

sets Xj’s with finite measure, that is, X =
⋃∞
j=1Xj for µ(Xj) <∞.

Proposition (pp.25). Let (X,M, µ) be a measure space. If µ is σ-finite, then it is semifinite.

Proof. Assume µ is σ-finite. Then, there is Xj ∈ M such that X =
⋃∞
j=1Xj and µ(Xj) < ∞ for all

j ∈ N. Assume without loss of generality that Xj’s are disjoint and nonempty. Then, for any non-empty

subset F ∈M, we have

F = F ∩X = F ∩

 ∞⋃
j=1

Xj

 =

∞⋃
j=1

F ∩Xj .

Assume µ(F ) =∞. Then, since Xj’s are all disjoint, we obtain

∞ = µ(F ) =

∞∑
j=1

µ(F ∩Xj). (1)

Here, note that since F ∩Xj ⊆ Xj , we have µ(F ∩Xj) ≤ µ(Xj) <∞ ∀j ∈ N by monotonicity. Since

µ(F ∩Xj) ≥ 0 ∀j ∈ N, (1) implies that there is n ∈ N such that µ(F ∩Xn) 6= 0. So, for such n ∈ N

we have 0 < µ(F ∩Xn) <∞, implying that a σ-finite measure µ is semi-finite.

Proposition (pp. 25). Let X be any nonempty set and f be any function from X to [0,∞]. Define

µ : P(X) → [0,∞] as µ(E) =
∑

x∈E f(x) for E ∈ P(X), where
∑

x∈E f(x) is the uncountable sum

defined as ∑
x∈E

f(x) = sup

{∑
x∈F

f(x) : F ⊆ E, F is finite

}
.

Then,

1) µ is a measure on the measurable space (X,P(X));

2) the measure µ is semi-finite iff f(x) <∞ for all x ∈ X;

3) the measure µ is σ-finite iff µ is semi-finite and {x : f(x) > 0} is countable.
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Proof. First, let A be defined by A := {x ∈ E : f(x) > 0} for E ∈ P(X). If A is uncountable, we

have
∑

x∈E f(x) = ∞, and if A is countable, then
∑

x∈E f(x) becomes a usual (infinite) series (see

Proposition 0.20 in Folland’s real analysis book).

• µ(φ) =
∑

x∈φ f(x) is an empty sum which is considered zero (search “empty sum” in Wikipedia).

• Let E ∈ P(X) be expressed as E =
⋃∞
j=1Ej where Ej ∈ P(X) are disjoint subsets of E ⊆ X .

Define Aj as Aj := {x ∈ Ej : f(x) > 0}.

– If there is j ∈ N such that Aj is uncountable, then so is A. Therefore, we have
∑

x∈Ej
f(x) =∞

and
∑

x∈E f(x) =∞, which yield

µ

( ∞⋃
j=1

Ej

)
=
∑
x∈E

f(x) =∞,
∞∑
j=1

µ(Ej) =

∞∑
j=1

∑
x∈Ej

f(x) =∞.

– Assume that Aj is countable for all j ∈ N. Then, A is also countable so
∑

x∈E f(x) is a usual

infinite series in this case. Therefore, since Ej’s are disjoint, we have

µ

( ∞⋃
j=1

Ej

)
=

∑
x∈

⋃∞
j=1 Ej

f(x) =

∞∑
j=1

∑
x∈Ej

f(x) =

∞∑
j=1

µ(Ej).

By the above arguments, µ is a measure on the measurable space (X,P(X)).

Second, assume f(x) <∞ ∀x ∈ X and E ∈ P(X) satisfies

µ(E) =
∑
x∈E

f(x) =∞. (2)

From (2) and f(x) < ∞, it can be seen that there is at least one xj ∈ E such that 0 < f(xj) < ∞.

Then, if we choose a finite subset F ⊂ E that contains xj , then obviously its subset {x ∈ F : f(x) > 0}

is not empty. Therefore, we have 0 < µ(F ) =
∑

x∈F f(x) <∞. That is,

f(x) <∞ ∀x ∈ X =⇒ µ is semi-finite.

Now, assume µ is semi-finite and f(x) = ∞ for some x ∈ X . Then, for such x, we have µ({x}) =∑
x∈{x} f(x) = ∞. However, the subsets of the singleton {x} are just φ and {x}, and µ(φ) = 0 and

µ({x}) = ∞, so there is no subset F ⊂ E satisfying 0 < µ(F ) < ∞ when E = {x}. That is, µ is not

semi-finite, a contradiction. Therefore,

µ is semi-finite =⇒ f(x) <∞ ∀x ∈ X.

Lastly, let Ej be the disjoint subsets of X such that X =
⋃∞
j=1Ej . Since a finite measure (µ(X) <∞)

is always σ-finite, we assume µ(X) =∞ without loss of generality.
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• Assume that µ is σ-finite. Then, it is semi-finite. Let Ej satisfy µ(Ej) <∞ for all j ∈ N. Suppose

{x ∈ X : f(x) > 0} is uncountable. Then, since

∃j ∈ N s.t. {x ∈ Ej : f(x) > 0} is uncountable ⇐⇒
∞⋃
j=1

{x ∈ Ej : f(x) > 0} is uncountable,

and X =
⋃∞
j=1Ej , there is j ∈ N such that {x ∈ Ej : f(x) > 0} is uncountable. Therefore,

by Proposition 0.20 in Folland’s real analysis book, we have µ(Ej) = ∞, a contradiction. So,

{x ∈ X : f(x) > 0} should be countable.

• Assume that µ is semi-finite and A = {x ∈ X : f(x) > 0} is countable. Then, semi-finiteness

implies f(x) < ∞ ∀x ∈ X , and countability implies µ(X) =
∑

x∈X f(x) =
∑∞

j=1 f(xj), where

xj ∈ A. If we set Ej be a subset in X that satisfies X =
⋃∞
j=1Ej and contains precisely one

member xj of A (by invoking axiom of choice), then

µ(Ej) = f(xj) +
∑

x∈Ej\{xj}

f(x)

︸ ︷︷ ︸
=0 (∵

∑
x∈Ac∩Ej

f(x)=0)

<∞.

Therefore, even when µ(X) =∞, we have µ(Ej) <∞ for all j ∈ N, so µ is σ-finite, the completion

of the proof.

Exercise 9 (pp. 27). If (X,M, µ) is a measure space and E,F ∈M, then

µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F ).

Proof. Note that

µ(E) = µ((E ∩ F ) ∪ (E \ F )) = µ(E ∩ F ) + µ(E \ F ),

µ(F ) = µ((F ∩ E) ∪ (F \ E)) = µ(E ∩ F ) + µ(F \ E).

From Vann diagram, we can easily see that µ(E ∩ F ) + µ(F \E) + µ(E ∩ F ) = µ(E ∪ F ). Therefore,

we have µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F ).

Exercise 10 (pp. 27). Given a measure space (X,M, µ) and E ∈ M, define µE(A) = µ(A ∩ E) for

A ∈ E . Then, µE is a measure.

Proof. First, µE(φ) = µ(φ∪E) = µ(φ) = 0. Assume that {Aj}∞j=1 is a sequence of disjoint sets in M.

Then, Aj ∩ E is also disjoint since Aj ∩ E ⊆ Aj . Therefore, we have

µE

( ∞⋃
j=1

Aj

)
= µ

( ∞⋃
j=1

Aj ∩ E
)

=

∞∑
j=1

µ(Aj ∩ E) =

∞∑
j=1

µE(Aj)
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Therefore, µE is also a measure on the measurable space (X,M) and its restricted one (E,ME), where

ME := {ME ∈M :ME = E ∩M for some M ∈M}.


