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This note presents the (Lebesque-)Radon-Nikodym Theorem, Jordan Decomposition, and some of the

math related to them. The materials either directly come from or strongly related to those in Chapters

3.1 and 3.2 in Folland’s real analysis book. The full-proof of the Lebesque-Radon-Nikodym Theorem is

not provided for simplicity.

Let ν be a signed measure and µ is a positive measure on a measurable space (X,M).

Definition 1. ν is said to be singular with respect to µ (or ν and µ are said to be mutually singular),

denoted by ν ⊥ µ, iif X is represented as X = E ∪ F for the two disjoint measurable sets E, F ∈ M

such that ν(E) = µ(F ) = 0.

Definition 2. ν is said to be absolutely continuous with respect to µ, denoted by ν ≪ µ, iif

µ(E) = 0 =⇒ ν(E) = 0.

Theorem 1. Suppose ν is finite. Then, ν ≪ µ iif for every ε > 0, there exists δ > 0 such that |ν(E)| < ε

whenever µ(E) < δ.

Lemma 1. The signed measure ν given by ν(E) =
∫

E
fdµ for an extended µ-integrable function is

absolutely continuous with respect to µ.

Proof. Without loss of generality, suppose that f ∈ L+.1 Since f is measurable, there exists a sequence

{φj ∈ L+} of simple functions such that φn is monotonically increasing and pointwisely converges to f ,

so that supj φj(x) = f(x). Then, consider the standard representation of each φj :

φj(x) =

n
∑

k=1

ajkχEjk
(x),

1Otherwise, separate f as f = f+ + f
−

for f+, f
−
∈ L+ and then proceed with f+ and f

−
separately, instead of f .
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where ajk ∈ R and {Ejk ∈ M}nk=1
is a finite family of disjoint measurable sets Ejk such that X =

⋃n
k=1

Ejk. Then, µ(E) = 0 implies µ(Ejk ∩E) = 0 for all k ∈ {1, 2, · · · , n} (∵ Ejk’s are all disjoint),

and hence
∫

E

φj dµ =

n
∑

k=1

ajkµ(Ejk ∩ E) = 0.

By MCT, we finally obtain

ν(E) =

∫

E

f dµ = lim
j→∞

∫

E

φj dµ = 0.

Corollary 1. If f ∈ L1(µ), then for every ε > 0, there exists δ > 0 such that

µ(E) < δ =⇒

∣

∣

∣

∣

∫

E

f dµ

∣

∣

∣

∣

< ε.

Proof. By Theorem 1 and Lemma 1.

Theorem 2. (The Lebesque-Radon-Nikodym Theorem) Let ν and µ are σ-finite. Then,

1) ν can be expressed as ν = ν1 + ν2 for the two σ-finite signed measures ν1 and ν2 such that ν1 is

singular and ν2 is absolutely continuous with respect to µ, i.e., ν1 ⊥ µ and ν2 ≪ µ;

2) there is a µ-extended integrable function f : X → R such that dν2 = fdµ and any two such

functions are equal µ-a.e.

Theorem 3. (Jordan Decomposition) Let ν be the signed measure given by ν = fdµ for some µ-

extended integrable function f . Then, µ+ = f+ dµ and µ− = f− dµ are the unique positive measures

such that ν = µ+ − µ− and µ+ ⊥ µ−, where f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.

Proof. Since f = f+−f−, ν = µ+−µ− is obvious. Let E = f−1([0,∞)) and F = f−1((−∞, 0)). Then,

both E and F belong to M, are disjoint (since so are [0,∞) and (−∞, 0)), and X = f−1(R) = E ∪F .

Moreover, f+(x) = 0 for every x ∈ F and f−(x) = 0 for every x ∈ E, implying µ+(F ) = µ−(E) = 0,

that is, µ+ ⊥ µ−.

Lemma 2. If ν is both singular and absolutely continuous with respect to µ, then ν = 0.

Proof. Suppose X = E ∪ F for the disjoint measurable sets E, F ∈ M such that ν(E) = µ(F ) = 0.

Then, ν(E) = 0 implies |ν|(E) = 0; ν ≪ µ implies |ν| ≪ µ and thus, |ν|(F ) = 0 by µ(F ) = 0.

Therefore, we obtain |ν| = 0, which again implies ν = 0.
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Corollary 2. (The Radon-Nikodym Theorem) Let ν and µ are σ-finite and ν is absolutely continuous

with respect to µ. Then, there is a µ-extended integrable function f : X → R such that dν = fdµ and

any two such functions are equal µ-a.e. Moreover, if ν is finite, then such f is µ-integrable.

Proof. By the Lebesque-Radon-Nikodym Theorem (Theorem 2), there are two signed measures ν1 and

ν2 such that

1) ν = ν1 + ν2, ν1 ⊥ µ, and ν2 ≪ µ;

2) ν2 = fdµ for some µ-extended integrable function f .

Moreover, ν ≪ µ by assumption, implying that ν(E) = 0 whenever µ(E) = 0. Since ν2 ≪ µ also

implies that ν2(E) = 0 for E satisfying µ(E) = 0, we have ν1(E) = 0 whenever µ(E) = 0 by

0 = ν(E) = ν1(E) + ν2(E) = ν1(E). That is, ν1 ≪ µ. Hence, now that we have ν1 ≪ µ and ν1 ⊥ µ,

Lemma 2 yields ν1 = 0 and hence, ν = ν2 = fdµ.

Next, suppose that ν is finite and decompose it as ν = µ+ − µ−, where the positive measures µ+ =

f+ dµ and µ− = f− dµ are the unique mutually-singular pair for ν shown in Theorem 3. Therefore,

|ν|(X) = µ+(X) + µ−(X) =

∫

X

|f | dµ < ∞,

where |ν|(X) < ∞ was used. This proves that f is µ-integrable.


