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Abstract

Integral Reinforcement Learning and Adaptive Inverse

Optimal Control for Continuous-Time Dynamical Systems

Jae Young Lee

Department of Electrical and

Eletronic Engineering

The Graduate School

Yonsei University

This dissertation studies integral reinforcement learning (IRL) and adaptive inverse op-

timal control for continuous-time (CT) dynamical systems. The ultimate goal of these

series of researches is to develop the true adaptive optimal control scheme for the target

dynamical systems, which have remained as a challenging problem for a long period in the

fields of both control systems engineering and machine learning.

IRL is a family of RL methods to learn the optimal control law for unknown or par-

tially unknown CT dynamical systems based on integral rewards. First, this dissertation

introduces and analyzes various partially model-free IRL algorithms including integral pol-

icy iteration, integral value iteration, infinitesimal generalized policy iteration (GPI), and

their generalization “integral GPI”. By the mathematical analyses, a new classification of

such IRL methods is established, and the conditions for closed-loop stability and monotone

convergence are provided. Next, the I-PI algorithm is extended to propose a class of online

IRL algorithms that e�ciently use the probing signal to relax the model requirements and

eliminate the negative e↵ects of the probing signal on the learning algorithms. As a result,

a model-free integral Q-learning and partially model-free explorized I-PI algorithms are

proposed, both of which e�ciently update the parameters while exploring the stable re-

gion. Several mathematical analyses and simulations are provided to verify the theoretical

xiv



evidence and the performance of the IRL methods.

In the study of adaptive inverse optimal control, we focus on the cooperative graphical

formation control problem of multiple mobile robots, each of which is modeled by a CT

dynamical system. Both kinematics and dynamics of the mobile robots are transformed

to consensus error plus velocity motion dynamics, which makes it possible to design the

inverse optimal consensus and the adaptation law parts separately. This control-theoretic

approach approximately provides the inverse optimality with respect to the given commu-

nication topology among the robots. By Lyapunov’s and Hamiltonian analyses, the sta-

bility and inverse optimality are mathematically shown. Finally, a numerical simulation

is given to support the theoretical statements and verify the performance under various

scenarios.

Keywords: true adaptive optimal control, integral reinforcement learning,

adaptive inverse optimal control, continuous-time, dynamical system,

integral policy iteration, integral generalized policy iteration,

integral Q-learning, mobile robot, graphical formation control, consensus,

multi-agent system, optimality, inverse optimality, stability, convergence
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Chapter 1

Introduction

This dissertation focuses on

1. a class of reinforcement learning (RL) for CT dynamical systems known as integral

RL (IRL);

2. adaptive inverse optimal design methodologies for control of CT multi-agent dynam-

ical systems with limited communications.

The academic spectrum of these interdisciplinary topics is extended from machine learning

involved in optimal decision-making problems to control theories and applications related

to optimal control problems. In fact, these two kinds of dynamic optimization problems

coming from the di↵erent branches can be viewed in a unified manner, which help under-

stand the dissertation.

1.1 Unified Viewpoint of Optimal Decision and Control

In machine learning fields, there have been tremendous researches on the design of a

learning agent for its optimal behavior or decision in an unknown environment. This kind

of design problem is often referred to as an optimal decision-making problem or a RL

problem; Sutton and Barto suggested in their book [1] the terminologies in a RL problem

as follows:

• agent: a learner or a decision maker;

• environment: everything outside the agent it interacts with;

• state (s
t

): the variables describing the states of the environment;

• action (a
t

): the input to the environment determined by the agent;

1



Figure 1.1: The agent-environment interaction in RL

• policy: a mapping from states to probabilities of selecting each possible action;

• reward (r
t

): the numerical outcome the agent receives from the environment;

• return (R
t

): the sum of the rewards R
t

=
P1

k=t

r
t+k

.

In the RL problem, the agent and environment interact at discrete-time (DT) step t

in such a way that the agent receives the state s
t

and reward r
t

from the environment

and on that basis chooses an action a
t

to be applied to the environment for the change

of its state s
t+1

in a proper way. This interaction between the agent and environment is

described in Fig. 1.1. Now, the RL problem is described as a problem of finding the best

policy that

Maximize R
t

=
1
X

k=t

r
t+k

.

On the other hand, optimal control theories and methods were developed in the fields

of control system engineering for the design of a controller in an optimal manner for a

given dynamical system and control objectives [2–4]. Similar to optimal decision-making

problems, the terminologies in an optimal feedback control problem in CT domain can be

defined as follows.

• controller: a control input generator;

2



Figure 1.2: The interaction of controller and dynamical system in CT domain.

• dynamical system: an environment described by a di↵erential equation;

• state (x
t

): the variables describing the states of the environment;

• control input (u
t

): the input to the dynamical system determined by a controller;

• policy: a function that generates the control input from the state;

• cost (r
t

): the numerical outcome representing the instaneous control performance;

• performance index (V
t

): the integral of the costs V
t

=
R1
t

r
⌧

d⌧ .

In the CT optimal feedback control problem, the controller and the dynamical system

interact continuously at each time instant t in such a way that the controller generates u
t

to control the dynamical system in an optimal way based on the state and cost fed-back

from the dynamical system. This interaction between the controller and dynamical system

is also described in Fig. 1.2, and the solution to the problem is the optimal policy that

Minimize V
t

=

Z 1

t

r
⌧

d⌧.

Here, the performance index under the optimal policy, called the optimal value function,

satisfies the Hamilton-Jacobi-Bellman (HJB) equation known as Bellman optimality equa-

tion in machine learning fields [1, 5]. In optimal control problems, the performance index

3



Table 1.1: Terminologies in optimal control problems and their synonyms in RL problems

No.
Terminologies in
control eng. fields

Synonyms in
machine learning fields

1 controller agent

2 dynamical system environment

3 state, state variable state

4 control input, control action, decision

5 policy, control law, protocol policy

6 cost reward

7
performance index,
cost functional

return

8 feedback control interaction

9 adaptation, learning learning

10
Hamiltonian equation,

Bellman equation
Bellman equation

11 HJB equation Bellman optimality equation

12 (optimal) value function (optimal) value function

13 persistency of excitation (PE) exploration

(the long-term cost-to-go function) specifies the desired performance with respect to the

states and control inputs in the long run, implicitly balancing the amound of required

control e↵orts and the desired transient response.

From the discussions with Figs. 1.1 and 1.2, one can see that both optimal feedback

control and optimal decision-making problem can be viewed in an unified manner as an

optimization problem of an agent/controller for a given environment and rewards/costs

specifying the objectives of the agent/controller. The synonyms in both problems including

those in Figs. 1.1 and 1.2 are summarized in Table 1.1.

1.2 Reinforcement Learning: A Historical Review

RL is a class of goal-directed learning algorithms that originate from and are inspired by

biological animal learning mechanisms [1, 5–7]. A RL agent tries to learn the best policy

by interacting with a given unknown environment to maximize its return, the sum of the

4



rewards the agent receives, or to minimize the given cost functional [1,5,6]. Here, the RL

agent and environment interact with each other in the exactly same way to that explained

in the previous section (see Fig. 1.1 and 1.2).

1.2.1 Reinforcement Learning in Discrete-Time Domain

From the early 1980’s up to date, on the basis of temporal di↵erence (TD) prediction, there

have been plenty of studies on RL methods in machine learning fields with special focus

on the environment expressed by a finite Markov decision process (MDP) [1, 6–11]. As a

result, a variety of RL methods in finite MDPs have been proposed, including Sarsa [1],

Q-learning [9], actor-critic methods [1,7], to name a few (see [8] for a survey and [1] for a

comprehensive understanding). Here, a finite MDP is referred to as a DT system that has

a finite number of discrete states and actions with state transition probabilities depending

only on the current state and action [1, 11].

There are also a number of generalizations of the RL methods in finite MDPs to those

in general DT systems whose states or actions or both are “continuous” or “discrete but

terribly many,” e.g., see [1,6,10–17] for the RL methods developed from machine learning

perspectives and [5, 6, 18–30] from control systems perspectives. In these methods, the

value function or action-value function known as Q-function is approximated by a neural

network (NN) or a general function approximator. In machine learning fields, the RL

studies focus on how to discretize and represent the continuous state or action space to

e�ciently learn the optimal behavior and how to improve the performance by modifications

of the learning rules. Combined with a deep learning NN, the recent study [17] in maching

learning fields shows that the policy trained by the RL agent is superior to the professional

human operator’s policy, revealing the excellent performance of the RL methods. The other

successful applications are shown in [12,16].

5



Reinforcement Learning for Discrete-Time Dynamical Systems

Focused on the environment described by a DT nonlinear dynamical system, Werbos [18]

proposed several classes of adaptive dynamic programming (DP) methods such as heuris-

tic dynamic programming (HDP), dual heuristic dynamic programming (DHP), action-

dependent HDP (ADHDP), and their generalizations with their respective learning prin-

ciples; Prokhorov and Wunsch [21] elaborated and simplified these ideas in a practical

manner. Here, the term adaptive DP is often referred as a synonym of RL [5, 6, 11] since

it has the actor-critic NN structure and the same purpose to RL: “solving the optimal

control problems using TD learning”; ADHDP is actually a kind of Q-learning since it

approximates the Q-function in forward time without using the knowledge of the system

dynamics to learn the optimal solution. On the other hand, HDP and DHP approximate

the value function and its derivatives, respectively, to learn the optimal solution, but both

need a complete description of the dynamical system to run. There also exist many ap-

plications of these adaptive DP methods, e.g., power systems [26] and tra�c flows [27] to

name a few.

Stability and Convergence Issues

The key properties in a controlled dynamical system equipped with a RL agent are

1. closed-loop stability;

2. convergence near or to the optimal solution.

Here, closed-loop stability roughly means that under the given control, the state with

small initial perturbations remains small for all time [31–33]. This is di↵erent from the

concept of convergence that describes the behaviors only after a su�ciently large amount

of time or iteration has passed [34]. There are a class of systems that converge to the

desired operating point, but fail to be stabilized (see [31] for an example).

6



Policy Iteration, Generalized Policy Iteration, and Value Iteration

For a linear qudaratic regulator (LQR) problem, an optimal control problem with a lin-

ear system and a quadratic cost, Bradtke, Ydstie, and Barto [19] presented a Q-learning

algorithm based on policy iteration (PI) and showed that the algorithm yields stable con-

trol sequences that converge to the optimal solution under the persistency of excitation, a

similar concept of the su�cient number of visits in a finite MDP required for convergence

of the RL policy to the optimal one [1, 9]. Here, PI is a class of algorithms consisting of

the two processes called policy evaluation and policy improvement to sequentially find the

optimal solution [5,13]. In principle, the PI for a finite MDP is not implementable since it

requires the infinite number of recursions named Bellman fixed point iterations in every

policy evaluation step [1]. On the other hand, PI for the DT dynamical systems is realiz-

able via least squares (LS), but at the expense of the need for an initial stabilizing policy to

run [5,19]. The Q-learning given in [19] for an LQR problem also assumed that the initial

policy is stabilizing, which limits the use of the RL method in practical applications.

In a finite MDP, generalized PI (GPI) is the general idea of allowing the two consecutive

steps of PI, policy evaluation and improvement, to be performed without completing

the other step. [1, 35, 36]. Modified PI, formulated by Putermain and Shin [35] and van

Nunen [36], is a typical example of this, where only the finite number of Bellman fixed-

point iterations are performed to approximately implement the policy evaluation of PI.

This idea of modified PI was also extended to the optimal control of DT dynamical systems

with some convergence and stability analysis [5, 29].

When the modified PI performs only one Bellman fixed-point iteration at every policy

evaluation of GPI, then it is called value iteration (VI) [1, 5]. Actually, it was originated

in a finite MDP framework The convergence proof in a finite MDP framework was given

in [1]. When applied to DT dynamical systems, VI has advantage over PI in that it does

not need any initial stabilizing policy to run. Hence, the VI can be implemented regardless

of whether the initial policy is stabilizing or not. The convergence proofs of VI for DT
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dynamical systems were given by Landelius [20] for an LQR problem and by Al-Tamimi [25]

for a DT nonlinear optimal control problem with input-a�ne dynamics. With convergence

proof, the ADHDP or Q-learning methods based on VI were also proposed in [20] for

an LQR problem and [25] for a linear zero-sum game problem. Actually, all of the ADP

methods mentioned above with the literature [18,21,26,27] are also designed based on VI,

rather than PI, but the proof of convergence in the general case is still an open problem, to

the best author’s knowledge, except the special cases, e.g., [24]. The model-free RL output

feedback schemes were proposed in [28,30].

1.2.2 Reinforcement Learning in Continuous-Time Domain

The RL ideas in DT domain are further extended to the general CT systems that have

continuous states and actions [37–40]. Regardless to say, these CT extensions are necessary

and meaningful in a practical manner since almost all real physical systems are modeled

in CT, but to the best author’s knowledge, the exact discretization is possible only for

limited cases [33, 41, 42], e.g., linear systems [33]. However, the main barrier in extending

the RL ideas from DT to CT is that the rare Q-function is hard to be expressed in a TD

bootstrapping form. This is because the time di↵erence in DT becomes time di↵erential

in CT domain, so there does not exists the next state in CT domain determined only by

the current state and action pair; it is actually determined by the current state and the

CT action during the time interval that continuously change the states for that period

[33].

Several RL methods were proposed in CT domain without considering stability and

convergence proofs. Baird [37] proposed Q-learning-like method called advantage updating,

where the CT Bellman equation is discretized using the Euler’s method and then to

apply the idea of Q-learning. Based on the same discretization method, Doya [38] further

extended the RL ideas in DT such as TD learning and eligibility trace [1] to develop

his CT RL methods; the simulation studies for the pendulum/cart-pole swing-up tasks

8



were also given in [38] to compare the CT RL algorithms. Hanselmann, Noakes, and

Zaknich [39] extended the adaptive DP methods in DT [18, 21] to propose continous-

time adaptive DP methods with fast update rules. Mehta and Meyn [40] revealed the

relation between Q-function and Pontryagin’s minimum principle and then proposed their

Q-learning algorithm applicable to stochastic CT dynamical systems.

All of the above RL methods in CT domain did not consider their stability; the conver-

gence to the optimal solution is still an open problem for those RL methods. To the best

author’s knowledge, the adaptive DP method given in [43] is the first one in CT whose

stability and convergence were rigorously proven (see [44] for the proof). It is actually

equivalent to the PI method [45–47] in the control communities that guarantees closed-

loop stability and monotone decreasing convergence under an initial admissible policy

(see also [48] for PI in CT for input-constrained case). Similar to Monte Carlo methods

in DT [1], however, it is needed for the adaptive DP [43] to integrate or summing up the

costs for all time and for each given initial condition by observing the states and control

inputs. Moreover, for the relaxation of the requirements of the system drift dynamics, the

derivatives of the state variables should be obtained, which is di�cult and may contain

undesirable noises that degrade the performance.

Integral Reinforcement Learning

By combining adaptive DP [43] with integral TD (I-TD), a class of RL methods in CT

named integral RL (IRL) was presented with stability and convergence studies. The IRL

methods are designed with the ideas of PI, GPI, and VI to find the online solution to a

CT input-a�ne nonlinear optimal control problem with unknown system drift dynamics

by minimizing or decreasing the associated I-TD error at each step. (see [5, 49] for a

comprehensive survey and review).

For the IRL schemes developed from PI [43,45–47] in particular, which is called integral

PI (I-PI) in this dissertation, the stability and convergence to the optimal solution were
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proven under the initial admissible policy [50]. The implementation methods based on LS

and the Galerkin NN approximation were also presented in [50]. The IRL schemes derived

from the ideas of GPI and VI are also shown in [51] and [49], respectively; they are named

in this dissertation integral GPI (I-GPI) and integral VI (I-VI). While I-PI inherently

needs an initial admissible (stabilizing) policy to run the algorithm, which is required

for any PI method applied to dynamical systems, such an initial admissible policy is not

required for I-GPI and VI as was done for GPI and VI for DT dynamical systems above.

Unfortunately, the stability and convergence of I-GPI and VI are not fully investigated up

to date, which restrict the use of the IRL algorithms.

1.3 Adaptive Optimal Control Theories

The RL methods in the previous section can be considered adaptive optimal control

schemes in the control systems point of view; they adaptively find the optimal policy

in an unknown environment and after the convergence of the policy, they are near-optimal

with respect to the given cost functional or return. In this process, the balance between

“exploration of the state or state-action space” and “exploitation of the learned policy”

determines the degree between “the convergence to the optimal policy” and “the current

performance.” This is known as exploration vs. exploitation dilemma in both communities

of RL [1, 6, 9] and adaptive control [52, 53].

1.3.1 Adaptive Control without Optimality

Adaptive control is a branch in control engineering fields regarding the design of a controller

that equips with a adaptation/learning law to eliminate the parametric uncertainties so as

to gradually improve the control performance against uncertainties [31, 52, 54–56]. There

are a large number of adaptive control schemes that are either combined with well-designed

state estimators [31,54] or directly designed via Lyapunov’s stability analysis [31,52,54–56].

This dissertation focus on the latter approach, which is more involved in the stability-
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guaranteed design of control and adaptation laws. A number of intelligent adaptive control

schemes, combined with NNs, were also reported in both cases [57–60].

On the other hand, considerable e↵orts have been made to design an adaptive controller

which e�ciently balances the exploitation and exploration for good transient performance

by regulating the magnitudes of the exploratory random signals injected through the

control input channels [52,53,61]. Here, the exploitation and exploration issues are directly

connected to the notion of PE1 as a dilemma between the satisfaction of PE (e�cient

exploration) and the satisfactory control performance (exploitation to improve the stability

and state convergence).

The adaptive control schemes above contain the RL-like components such as “adap-

tation law” and “PE” that are similar to the terms “learning rule” and “exploration,”

respectively, as shown in Table 1.1. However, they failed to take a long-term performance

index such as return and cost functional into considerations; they are just designed via

cancellation of the unknown terms based on the short-term immediate costs.

1.3.2 Model-Based Optimal Control

In the optimal control approaches, Pontryagin’s minimum principle and DP are two repre-

sentative methods applicable to obtain the optimal policy minimizing a given performance

index [2, 3, 5, 63]. Both optimal control approaches, however, are basically o↵-line and re-

quire complete knowledge of the system dynamics. In this dissertation, we focus on DP

approaches.

The objective of DP is to solve the associated HBJ equation in backward time to obtain

the optimal value function and policy. However, this is a formidable task even in the case

of completely known dynamics due to the intractability of the HJB partial di↵erential

equation and a problem known as the curse of dimensionality.2 The adaptive DP and RL

1The PE condition generally means that the corresponding signal is persistently changing. Hence, the
satisfaction of PE introduces oscillatory states and control inputs, and even cause the escape of the stable
region. However, without satisfaction of persistency of excitation, the learning parameters cannot converge
to the true values [31, 52,53, 56,62].

2In DP, the computational complexity increases exponentially as the number of states grows linearly
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methods shown in Section 1.2 are candidates to alleviate these problems.

Model Predictive Control

In control engineering fields, there are another approaches to alleviate the aforementioned

di�culties in solving the HJB equation. One candidate is model-predictive control, also

named receding-horizon control, a finite-horizon optimal control problem is formulated

that approximates the given, possibly infinite-horizon, optimal control problem. Here, the

finite-horizon problem is formulated in a way that it is solvable at every time step to yield

the suboptimal control sequences. Though the relevant theories were well-developed and

there are many successful applications, the suboptimal policy based on MPC undergoes

model-dependency and should be properly designed to alleviate computational burden.

Inverse Optimal Control

Inverse optimal control is another approach to obtain an optimal policy [64–67]. In an

inverse optimal approach, a stabilizing policy is given or designed a priori, and then

the cost functional to be minimized by the given policy is determined a posteriori ; The

control Lyapunov function is involved in the inverse optimal design [64]. Since this inverse

optimal approach does not need to solve the associated HJB equation, the aforementioned

problems regarding the HJB equation do not arise both in the design and implementation

steps. The design procedures, however, surely restrict the choice of the cost functional

since it is not given a priori, but determined a posteriori. Whatever the cost functional

is associated, an inverse optimal control poccess the same ‘good’ properties as the usual

optimal controllers such as 90 degree phase margin and infinity gain margin in the case

of LQR [63]. Though those advatanges above, the inverse optimal controller is designed

only in an o✏ine manner and should explicitly use the knowledge regarding the system

dynamics.

[2], which usually limits the use of DP to the cases with the reasonably small number of states.
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1.3.3 Adaptive Inverse Optimal Control

As briefly reviewed, adaptive control alone does not provide the optimality in the long run,

and the optimal control is usually designed in an o✏ine manner and do not provide the

learning rules to improve the performance against the model uncertainties. To overcome

these limitations, adaptive inverse optimal control schemes were studied as a combined

concept of adaptive control and inverse optimal control [68–70]. In this design methodology,

the so-called adaptive control Lyapunov function is constructed to yield both of the control

and adaptation laws in an inverse optimal fashion. While the choice of the cost functional

is restricted by the nature of inverse optimal control again, the adaptive inverse optimal

control has advantages against RL methods that it can guarantees the optimal transient

performance during online adaptation [68–70]. In RL approaches, the learning rules are

designed only for the learning of the optimal solution at the end, so the transient responses

are usually not optimal during the learning period.

1.4 Cooperative Graphical Formation Control

Formation control of multiple robots have received much attention for many years, and

various approaches such as behavioral methods [71, 72], virtual structure [73, 74], leader-

follower [75,76], and graph-theoretic techniques [77,78] have been developed. Among these

approaches for formation control, graph-theoretic technique, called cooperative graphical

formation control (CGFC) in this dissertation, has the highest degree of freedom of com-

munication among the mobile agents. While the communication topology in the other

approaches are determined and fixed in the design procedures, CGFC schemes allow to

have arbitrary communication structure described by a graph satisfying some required

properties (see Appendix C for a brief review of graph theory).
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1.4.1 Consensus Theories for Multi-Agent Systems

The design of CGFC is based on the consensus theories, whose objective is to achieve

consensus, meaning that all agents in the system reach to a common value [77]. However,

the studies on the consensus theories were mainly done under the assumption that the

dynamics of each agent is modeled by a linear system [77–84]. Moreover, in the case of

optimal consensus algorithms, there is no research for nonlinear multi-agent systems to the

best authors’ knowledge. This is mainly due to the di�culties arising from the constraints

on the communication topology of the group of the agents. Even for the linear optimal

consensus protocols [79–81], the optimality of the proposed protocols has not been proven

up to date due to those di�culties related to the communication constraints.

Inverse Optimal Consensus Protocols

The problem arising from the communication constraints in multi-agent optimal consen-

sus can be solved by designing the protocols with inverse optimality. In this case, the

minimizing performance index is determined a posteriori according to the given commu-

nication topology (and the designed protocol), so the aforementioned di�culties can be

alleviated. Considering the LQR performance, inverse optimal consensus protocols have

been studied for single integrator agents [82, 83] and identical linear time-invariant (LTI)

agent dynamics [79–81, 84–86]. For single integrator agents, Cao and Ren [83] presented

the optimal scaling factor and the optimal weighted adjacency matrix under undirected

graph; Qu and Simaan [82] analyzed the inverse optimality under fixed and switching di-

rected graph topologies. For identical LTI dynamics, Borrelli and Keviczky [79] proposed

a number of sub-optimal consensus schemes under undirected graphs, and their related

stability condition on algebraic connectivity. In [81] and [86], (sub-)optimal consensus pro-

tocols were proposed based on distributed estimation and game theories for general fixed

digraph topologies. Strongly related to this note is a class of protocols designed with the

solution of the simple ARE for both consensus [84] and synchronization [80,84,85].
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Second-Order Consensus Protocols

The second-order consensus protocols were studied in [87, 88]. In second-order consensus,

each agent is assumed to have a double integrator dynamics. In [87], Ren and Beard

introduced group velocity and proposed a second-order protocol that achieves “position

consensus to a common value” and “velocity consensus to the given group velocity.” This

concept can be extended to our CGFC design. On the other hand, to the best author’s

knowledge, there is no inverse-optimal approach up to now for the second-order consensus.

1.4.2 Cooperative Graphical Formation Control for Mobile Robots

The CGFC of multiple mobile robots are mostly designed based on the linear consensus

theory by virtue of dynamic feedback linearization [72, 89] that converts the kinematics

of a mobile robot into a simple double integrator. In [90] and [91], the authors proposed

nonlinear CGFC of mobile robots by employing backstepping and consensus theory for

nonholonomic systems [91]. However, most of the formation consensus methods for mobile

robots did not consider the dynamics that drives the velocity inputs of the kinematics. In

the recent preliminary work [92], an inverse optimal CGFC scheme was proposed, where

both kinematics and dynamics of the mobile robots were considered. To the best authors’

knowledge, this was the first to design the nonlinear inverse optimal GFC of mobile robots

considering their kinematics and dynamics, but it fails to grant the desired group velocity

to which all mobile agents’ velocities converge. This is since the design was based on the

first order consensus theory. Moreover, to the best authors’ knowledge, there is no result on

the adaptive inverse optimal design of CGFC for multiple mobile robots that guarantees

the nonlinear inverse optimality of the whole closed-loop multi agent system under the

exact parameter estimation.
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1.5 Contributions of the Dissertation

As mentioned at the beginning of this chapter, this dissertation focus on the development

and analysis of IRL methods for CT dynamical systems and the adaptive inverse optimal

design of CGFC for multiple mobile robots. The main contributions can be summarized

as the following three parts.

1. (Analysis and Classifications of IRL Algorithms) Noting that unlike I-PI,

the stability and convergence of I-VI and I-GPI are still an open question, this

dissertation analyze the stability and convergence of I-GPI, the most general IRL

among I-PI, I-VI, and infinitesimal GPI (the di↵erential limiting version of GPI).

The analysis focus on the two convergence mode named

• PI-mode convergence;

• VI-mode convergence.

As a result, a series of conditions are given for each convergence mode and stability.

In addition, the analysis suggests

• the new classification criteria of IRL algorithms

in terms of the so-called update horizon. This new classification reveals the relation

between the computational complexity and the learning speed of I-GPI (and IRL).

These contributions are shown in Chapter 4 and closely related to the journal

paper [93] and conference papers [94–96] published during the Ph. D. period.

2. (Explorized I-PI and Integral Q-Learning) The IRL algorithms (I-PI, I-GPI,

I-VI, and infinitesimal GPI) are partially model-free and require the complete knowl-

edge of the input coupling terms in the system dynamics. In addition, there is no

way to excite the state and input variables, which is truely necessary for online

learning. In this part, the online IRL algorithms named as explorized I-PI and inte-
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gral Q-learning are proposed based on I-PI by introducing a probing signal, called

exploration, and advanced I-TD. Here,

• integral Q-learning is a model-free IRL that e�ciently exploits exploration

to relax the model requirements and to excite the state and input variables;

• explorized I-PI is a partially model-free IRL that e�ciently learn the opti-

mal solution at the expense of the requirement of knowledge of input coupling

dynamics.

In addition, the conditions on the explorations are provided for input-to-state stabil-

ity (ISS) and safe learning of the optimal solution. These contributions are partially

shown in or closely related to the journal papers [97–99] and the conference papers

[100, 101] published during the Ph. D. period. The corresponding main part of this

dissertation is Chapter 5.

3. (Adaptive Inverse Optimal CGFC for Multiple Mobile Robots) Noting that

there is no research on inverse optimal second-order consensus with group velocity,

and adaptive inverse optimal approach in CGFC of multiple mobile robots,

• an adaptive inverse optimal design method of CGFC for mobile robot

is proposed with robots’ kinematics and dynamics considerations. The proposed

CGFC scheme is a union of the following inverse optimal and adaptive components,

designed one-by-one and separately:

• inverse optimal second-order protocol for CGFC of mobile robots;

• inverse optimal torque inputs for CGFC of mobile robots with full dynamics;

• adaptation law co-design for compensating parametric uncertainties.

By Lyapunov’s and Hamiltonian analyses, the stability and inverse optimality are

mathematically shown for the proposed methods. These contributions are shown in
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Chapter 6 and closely related to the journal papers [92, 102] and the conference

paper [103] published during the Ph. D. period.

To verify the theoretical evidence and the performance of the methods, several numeri-

cal simulations are carried out for load-frequency control system (Chapter 4), the inverted

pendulum (Chapter 5), and a group of mobile robots with various scenarios (Chapter 6).

1.6 Organization of Dissertation

This dissertation is organized as follows.

• Chapter 2 summarizes the mathematical notations and backgrounds that are re-

lated in the rest of this dissertation.

• In Chapter3, the stability and (inverse) optimality theories for CT dynamical sys-

tems are reviewed and developed to employ them as the tools in the design and

analyses of both IRL and adaptive inverse optimal controller in the dissertation.

• In the framework of CT LQR, Chapter 4 introduces I-PI, I-VI, infinitesimal GPI,

and their generalization I-GPI as the fundamental family of IRL algorithms that are

applicable to the linear systems with unknown system matrix. Then, these funda-

mental IRL families are classified in terms of their update horizon and then analyzed

to investigate the stability and convergence.

• InChapter 5, explorized I-PI and integral Q-learning are proposed with a number of

analysis in terms of its ISS and the e↵ects of explorations in relation to the nonlinear

I-PI and advanced I-TD.

• In Chapter 6, the adaptive inverse optimal design method of CGFC is proposed for

mutiple mobile robots. By Lyapunov’s and Hamiltonian analyses using the results in

Chapter 3, the stability and optimality are mathematically shown for the proposed

one.
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• Finally, Chapter 7 concludes the dissertation.
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Chapter 2

Mathematical Notations and

Backgrounds

In this chapter, the mathematical notations, concepts, and tools used or needed in the

rest of this dissertation are summarized. All of the real vectors in Rn and real matrices

in Rn⇥m for any natural numbers n,m 2 N are denoted with bold letters, and so are the

vector- or matrix-valued functions. The set of nonnegative integers and real numbers are

denoted by Z
+

and R
+

, respectively.

2.1 Notations of Vectors and Matrices

In a Euclidean space Rn,
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

kxk denotes any norm of a vector x 2 Rn;

kxk
2

:=
p
xTx is the Euclidean norm of a vector x 2 Rn;

0
n

2 Rn is the zero vector in Rn;

1
n

:= [ 1 1 · · · 1 ]T is the vector in Rn whose elements are all ones.

In Euclidean matrix spaces Rm⇥n and Rn⇥n,

• 0
m⇥n

2 Rm⇥n is the zero matrix in Rm⇥n;

• I
n

2 Rn⇥n is the identity matrix in Rn⇥n.

For a matrix A 2 Rm⇥n,

• kAk is a matrix norm of A that is compatible with a vector norm kxk for x 2 Rn

in a sense that kAxk  kAkkxk holds;

• kerA ✓ Rn indicates the null-space of A, i.e., kerA = {x 2 Rn : Ax = 0
n

}.

For a square matrix A 2 Rn⇥n,
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• �
i

(X) denotes the i-th eigenvalue of X with the absolute increasing order

�

�Re
�

�
1

(X)
�

�

�  ��Re��
2

(X)
�

�

�  · · ·  ��Re��
n

(X)
�

�

�.

For a finite sequence of matrices
�

Y
i

2 Rpi⇥qi
 

n

i=1

for some p
i

, q
i

2 N, diag{Y
1

, · · · ,Y
n

}
denotes a block-diagonal matrix of the form

diag{Y
1

,Y
2

, · · · ,Y
n

} :=

2

6

6

6

6

6

6

6

6

4

Y
1

0
p1⇥q2 · · · 0

p1⇥qn

0
p2⇥q1 Y

2

· · · 0
p2⇥qn

...
...

. . .
...

0
pn⇥q1 0

pn⇥q2 · · · Y
n

3

7

7

7

7

7

7

7

7

5

2 R(p1+···+pn)⇥(q1+···+qn).

(2.1)

For any N -real vectors x
j

2 Rnj (j = 1, 2, · · · , N), col{x
1

,x
2

, · · · ,x
N

} is the column

stacking operator defined as

col{x
1

,x
2

, · · · ,x
N

} := [ xT

1

xT

2

· · · xT

N

]T 2 Rn1+n2+···+nN .

With slight abuse of notation, the column stacking operator is also defined for a real matrix

X = [x
1

x
2

· · · x
m

] 2 Rn⇥m with its i-th column x
i

2 Rn as

col{X} := col{x
1

,x
2

, · · · ,x
m

} 2 Rnm.

For any two matrices X and Y,

• X⌦Y denotes the Kronecker product of X and Y.

Let the matrices X 2 Rn⇥m and Ȳ 2 R(np)⇥q be partitioned as

X =
h

xT

1r

xT

2r

· · · xT

nr

i

T

and Ȳ =
h

YT

1

YT

2

· · · YT

n

i

T

,

where x
ir

2 R1⇥m denotes the i-th row vector of X, and Y
i

2 Rp⇥q is the i-th submatrix

of Y (i = 1, 2, · · · , n). Then, the Khatri-Rao product X ⇤ Ȳ of the partitioned matrices X
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and Ȳ is defined as

X ⇤ Ȳ :=

2

6

6

6

4

x
1r

⌦Y
1

x
2r

⌦Y
2

...
x
nr

⌦Y
n

3

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

x
11

Y
1

x
12

Y
1

· · · x
1m

Y
1

x
21

Y
2

x
22

Y
2

· · · x
2m

Y
2

...
...

. . .
...

x
n1

Y
n

x
n2

Y
n

· · · x
nm

Y
n

3

7

7

7

7

7

7

7

7

5

.

To indicate that the Khatri-Rao product X ⇤ Ȳ is a generalized Kronecker product for a

matrix X 2 Rn⇥m and a given finite matrix sequence
�

Y
i

2 Rp⇥q

 

n

i=1

, we denote it by

X⌦ �Y
i

 

n

i=1

, i.e.,

X⌦ �Y
i

 

n

i=1

:= X ⇤ Ȳ.

Indeed, the Kronecker product X⌦Y is a special case of X⌦ {Y
i

}n
i=1

with “Y
1

= Y
2

=

· · · = Y
n

= Y”. That is, X ⌦Y = X ⌦ �Y n
i=1

. The properties of both the Kronecker

product X⌦Y and the Khatri-Rao product X⌦{Y
i

}n
i=1

are investigated and summarized

in Appendix A.

Definition 2.1. A symmetric matrix P 2 Rn⇥n is said to be positive definite (resp. positive

semi-definite), denoted by P � 0
n⇥n

(resp. P ⌫ 0
n⇥n

) if

xTPx > 0 (resp. xTPx � 0) for all nonzero vector x 2 Rn.

For any symmetric P, Q 2 Rn⇥n, we denote

• P � Q (resp. P ⌫ Q) if P�Q is positive definite (resp. positive semi-definite);

• P � Q (resp. P � Q) if Q�P is positive definite (resp. positive semi-definite).

Related to the systems theory, a square matrix X 2 Rn⇥n is said to be Hurwitz if every

eigenvalue of X has strictly negative real part, i.e., Re
⇥

�
i

(X)
⇤

< 0 for all i 2 {1, 2, · · · , n};
the matrix-time exponential of X 2 Rn⇥n and t 2 R is defined as an infinite series

eXt :=
P1

N=0

(Xt)N/N ! which converges to 0
n⇥n

in the limit t ! 1 if X is Hurwitz.

Related to this is the following lemmas that will be used throughout the dissertation.
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Lemma 2.1. For any X,Y 2 Rn⇥n and any t > 0,

eX
T
t YeXt �Y =

Z

t

0

eX
T
⌧ (XTY +YX)eX⌧ d⌧. (2.2)

Proof. From d

dt

eXt = XeXt = eXtX,

Z

t

0

eX
T
⌧ (XTY +YX)eX⌧ d⌧ =

Z

t

0

d

d⌧
eX

T
⌧YeX⌧ d⌧ = eX

T
t YeXt �Y,

which completes the proof.

In addition, if X is Hurwitz, (2.2) can be simplified as

�Y =

Z 1

0

eX
T
⌧ (XTY +YX)eX⌧ d⌧ (2.3)

in the limit t ! 1. This provides the explicit integral formula of the solution Y 2 Rn⇥n

of the Lyapunov equation shown below:

Lemma 2.2. If X 2 Rn⇥n is Hurwitz, then for any given Y 2 Rn⇥n, the Lyapunov

equation XTP+PX = �Y is uniquely solvable and its solution is given by

P =

Z 1

0

eX
T
⌧YeX⌧ d⌧. (2.4)

Proof. Here, substituting (2.4) and using d

dt

eXt = XeXt = eXtX and (2.3) proves that

(2.4) is a solution to the Lyapunov equation XTP+PX = �Y. For the uniqueness of the

solution P 2 Rn⇥n, see [104, Theorem 8.5.1].

2.2 Sets, Topology, and Functions in Rn

For any two sets X and Y in Rn,

• X ✓ Y (resp. X ⇢ Y ) indicates that X is a subset (resp. a proper subset) of Y ;

• @X denotes the boundary of X;

• X̄ is the closure of X, i.e., the union of X and @X.

Note that the closure X̄ of any setX is the smallest closed set containingX. For r 2 (0,1),
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• B
z

(r) := {x 2 Rn : kx� zk < r} is an r-radius open ball in Rn, centered at z 2 Rn.

Definition 2.2. A subset S of Rn is a linear subspace if it is closed under the vector

addition and scalar multiplication, i.e., x+ y 2 S and c · x 2 S for x, y 2 S and c 2 R.

Throughout the dissertation, S will be used to denote a linear subspace of Rn for some

n 2 N. The followings are examples of a linear subspace that will be shown and play a

central role in stability analysis in this dissertation.

Example 2.1. The singleton S = {0
n

} a linear subspace; actually it is the smallest among

the linear subspaces in Rn. In this dissertation, this zero linear subspace S = {0
n

} is termed

as the zero equilibrium or the zero equilibrium space.

Example 2.2. The null-space S = kerA of any matrix A 2 Rm⇥n is a linear subspace

in Rn. This type of linear subspace will be shown in Chapter 6.

For a linear subspace S ✓ Rn,

• d(x, S) denotes the distance function between x 2 Rn and the space S, i.e.,

d(x, S) := inf
�kx� yk : y 2 S

 

;

• d
2

(x, S) is the distance function d(x, S) with the Euclidean norm k · k = k · k
2

, i.e.,

d
2

(x, S) := inf
�kx� yk

2

: y 2 S
 

.

With slight abuse of notations,

• BS(") := {x 2 Rn : d(x, S) < "} is the "-neighborhood of a subspace S;

the closures of B
z

(r) and BS(") are denoted by B̄
z

(r) and B̄S("), respectively.

Definition 2.3. A subset ⌦ of Rn is compact if it is closed and bounded.

On the other hand, we impose the property of connectedness to the domains of func-

tions. Here, the connected set is precisely defined as follows.

Definition 2.4. An open set in Rn is said to be (path-)connected1 if for every x, y 2 D,

there is a continuous function f
xy

: [0, 1]! D such that f
xy

(0) = x and f
xy

(1) = y.

1There is a general notion of connectedness in topology, but our analyses are su�cient to define it
as a path-connectedness, which is a particular class of connectedness but more intuitive than its general
definition.

24



In this dissertation, we denote

• D(Rn, {0
n

}) the family of all open connected subsets that contain the origin 0
n

.

This can be eailsy generalized for a linear subspace S as follows.

• D(Rn, S) is the family of all open connected subsets that contain the subspace S.

Since {0
n

} ✓ S for any linear subspace S of Rn, we have D(Rn, S) ✓ D(Rn, {0
n

}). This
definition can be further extended to the general case by declaring for D, ⌦ ✓ Rn

• D(D,⌦) the family of all open connected subsets of D that contain ⌦ \D.

Here, if both D and ⌦ contain a linear subspace S ✓ Rn in common, then by D ✓ Rn and

S ✓ ⌦, we have the following chain of inclusions:

D(D,⌦) ✓ D(Rn,⌦)
✓ ✓

D(D, S) ✓ D(Rn, S) ✓ D(Rn, {0
n

}).

The other notations regarding the topology and connected subsets in in Rn are as follows.

• D̄(D,⌦) the family of closures of all open connected subsets in D(D,⌦).

• (D [ D̄)(D,⌦) the family of all connected subsets X in Rn such that either X 2
D(D,⌦) or X 2 D̄(D,⌦).

In this dissertation, the domains of most of the functions in Rn belong to D(Rn, S);

otherwise specified, such a domain in D(Rn, S) is denoted by D, i.e.,

• D ✓ Rn represents a domain of a function in Rn that belongs to D(Rn, S) for a

linear subspace S ✓ Rn.

Using this notation, we define

• C0(D) the set of all continuous functions on the domain D;

• C1(D) the set of all continuously di↵erentiable functions on the domain D.
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Definition 2.5. A function V : D ! R is said to be positive definite (resp. positive semi-

definite) on a (connected) subset ⌦ 2 (D [ D̄)(D, {0
n

}), denoted by V � 0 (resp. V ⌫ 0 )

on ⌦, if

1. V is continuous on ⌦, i.e., V 2 C0(⌦);

2. V (0
n

) = 0;

3. V (x) > 0 (resp. V (x) � 0) 8x 2 ⌦ \ {0}.

We simply say that V is positive definite (resp. positive semi-definite) if there is a subset

⌦ 2 (D [ D̄)(D, {0
n

}) such that V is positive definite (resp. positive semi-definite) on ⌦.

The gradient of a real-valued function f : D ✓ Rn ! R in C1(D) is defined as

rf(x) :=


@f(x)

@x
1

,
@f(x)

@x
2

, · · · , @f(x)

@x
n

�

T

2 Rn,

where x
j

(1  j  n) is the j-th element of x 2 D ✓ Rn. For a vector-valued function

f(x) =
⇥

f
1

(x), f
2

(x), · · · , f
m

(x)
⇤

T 2 Rm, rf or rf(x) is meant to be a matrix-valued

function of the first-order derivatives of the form

rfT (x) := ⇥rf
1

(x), rf
2

(x), · · · , rf
m

(x)
⇤ 2 Rn⇥m.

Lemma 2.3. If V : D ! R is in C1(D), positive semi-definite, and

V (x) = 0 () x 2 S, (2.5)

where S ✓ Rn is a linear subspace such that D 2 D(Rn, S). Then,

x 2 S =) rV (x) = 0
n

.

Proof. By “V ⌫ 0” (see Definition 2.5) and the condition (2.5), all of x in the space S are

the global minimums of V (x). Hence, rV (x) = 0 for any x 2 S follows from V 2 C1(D)

and the fact that D contains S in its interior.

Related to the systems theory and analysis, we define several classes of continuous

functions called comparison functions [32] are defined in the following. These comparison
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functions can be provided as upper- and lower-bounding elements of the other continuos

real-valued functions.

Definition 2.6. A continuous function ↵ : [0, a)! [0,1) is of class K, denoted by ↵ 2 K,

if it is strictly increasing and ↵(0) = 0; a class K function ↵ is of class K1, denoted by

↵ 2 K1, if a =1 and lim
r!1 ↵(r) =1.

Definition 2.7. A continuous function � : [0, a)⇥ [0,1)! [0,1) is of class KL, denoted
by � 2 KL, if �(·, s) 2 K for each fixed s, and for each fixed r, �(r, ·) is decreasing and

�(r, s)! 0 as s!1.

Lemma 2.4. Let V : D ✓ Rn ! R be a positive semi-definite function and B̄S(r) ✓ D for

some r > 0. Suppose V (x) = 0 whenever x 2 S. Then, there exist real-valued continuous

increasing functions ↵ and ↵̄, defined on [0, r], such that ↵(0) = ↵̄(0) = 0 and

↵(d(x, S))  V (x)  ↵̄(d(x, S)). (2.6)

Moreover, if the condition on V is strengthened to

x 2 S () V (x) = 0,

then ↵ and ↵̄ can be chosen to belong to class K. If D = Rn, ↵ and ↵̄ are defined on [0,1)

and satisfies (2.6) for all x 2 Rn. If V (x) ! 1 as d(x, S) ! 1, then ↵ and ↵̄ can be

chosen to belong to class K1.

Proof. See Appendix D.1.

If V is given by V (x) = xT Px for some P � 0
n⇥n

, then (2.6) follows from

↵ · kxk2
2

 xT Px  ↵̄ · kxk2
2

(2.7)

that holds for all x 2 Rn, where ↵, ↵̄ > 0 are chosen as ↵ = �
1

(P) and ↵̄ = �
n

(P). Here,

(2.7) can be extended for P ⌫ 0
n⇥n

as shown below.

Lemma 2.5. For any P ⌫ 0
n⇥n

, there exist positive constants ↵, ↵̄ > 0 such that

↵ · d2
2

(x, kerP)  xT Px  ↵̄ · d2
2

(x, kerP). (2.8)

Proof. See Appendix D.2.
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Definition 2.8. A function f : D ! Rm (m 2 N) is locally Lipschitz continuous (on D)

if for any x 2 D, there are r, L > 0 such that B
x

(r) ✓ D and

kf(y)� f(z)k  L ky � zk 8y, z 2 B
x

(r).

In what follows, we introduce the several classes of locally Lipschitz continuous func-

tions on D as follows.

• C0

L

(D): the set of all locally Lipschitz continuous functions;

• C1

L

(D): the set of all functions f : D ! Rm whose first-order derivatives are locally

Lipschitz continuous, i.e., rf 2 C0

L

(D);

• Ck

0

+(D) (k = 1, 2): the set of all positive definite functions in Ck(D);

• Ck

L

+(D) (k = 1, 2): the set of all positive definite functions in Ck

L

(D);

These classes of functions have the following chain of inclusions (2.9).

C1

L

+(D) ⇢ C1

0

+(D) ⇢ C0

L

+(D) ⇢ C0

0

+(D)

� � � �

C1

L

(D) ⇢ C1(D) ⇢ C0

L

(D) ⇢ C0(D)

(2.9)

Lemma 2.6. Suppose f(x) 2 Rn, G(x) 2 Rn⇥m, and u(x) 2 Rm are defined and locally

Lipschitz continuous on D. Then, f +Gu 2 C0

L

(D).

Proof. Suppose x 2 D. Since f , G, and u are locally Lipschitz continuous on D, there

exist r > 0 and Lipschitz constants L
f

, L
G

, L
u

> 0 such that B
x

(r) ✓ D and for any

y, z 2 B
x

(r), kf(y)�f(z)k  L
f

ky�zk, kG(y)�G(z)k  L
G

ky�zk, and ku(y)�u(z)k 
L
u

ky � zk. Moreover, there are g
M

, µ
M

> 0 such that kG(y)k  g
M

and ku(y)k  µ
M

hold for all y 2 B
x

(r). Therefore, letting h := f + gu and using the Lipschitz inequalities

and the properties of the norm, one can show that

kh(y)� h(z)k  kf(y)� f(z)k+ kG(y)u(y)�G(z)u(z)k
 L

f

ky � zk+ kG(y)�G(z)kku(y)k+ kG(z)kku(y)� u(z)k
 L

h

ky � zk,

where L
h

⌘ L
f

+ µ
M

L
g

+ g
M

L
µ

, and the proof is completed.
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Chapter 3

Stability and Optimal Control Theories

for Continuous-Time Dynamical Systems

In this preliminary chapter, we discuss and investigate the theories on both stability and

optimal control of CT dynamical systems. All of the dynamical systems in this dissertation

are described by a class of of input-a�ne CT nonlinear dynamical systems of the form

ẋ
⌧

= f(x
⌧

) +G(x
⌧

)u(x
⌧

), x(t) = z 2 D ✓ Rn (3.1)

where

8
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>
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>

:

x 2 Rn is the state variable;

u 2 Rm is a control policy to be determined;

z is the state value at given initial time instant ⌧ = t;

f : D ! Rn with f(0
n

) = 0
n

is a vector-valued function in C0

L

(D);

G : D ! Rn⇥m is a matrix-valued function in C0

L

(D);

D 2 D(Rn, S) is the domain of the functions f and G that contains S ⇢ Rn;

S ⇢ Rn is a linear subspace in Rn.

Notice that x = 0
n

is an equilibrium point, and the state x may be zero in the linear

subspace S ⇢ Rn, which is the generalized notion of the usual zero equilibrium point

S = {0
n

}. Throughout the dissertation, t indicates a specific time instant on [0,1) and

⌧ 2 [t,1) will be used as the time variable after the specified time instant t. In addition,

any function x(⌧) of time ⌧ will be denoted as x(⌧), x
⌧

, or simply x for conciseness.

For a well-posed problem, we assume that there is a control policy u(x) that asymptot-

ically stabilizes the system (3.1) to the equilibrium space S. Here, the notion of a (control)
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policy and the stability under a (control) policy are precisely defined below.

Definition 3.1. A control input function u : D ! Rm or its restriction on a subset ⌦ in

D(D, S) is said to be a policy or a control policy (restricted on ⌦) if

1. u is locally Lipschitz continuous on its domain;

2. u(x) = 0
m

whenever x 2 S.

Throughout the dissertation, x
⌧

(z;u) (and x
⌧

(z;u,0
m

)) denotes the state trajectory

x(⌧) at time ⌧ � t generated by the system (3.1) with the initial condition x
t

= z 2 D and

a policy u(x) (and the zero exploration e
⌧

⌘ 0
m

1). For simplicity, we write x
⌧

⌘ x
⌧

(z;u)

if z and u are well-understood in the context. Using these notations, we state the existence

and uniqueness of the solution x
⌧

(z;u) and define a stabilizing policy as shown below.

Proposition 3.1. For any policy u, there is T
max

2 (0,1] such that the unique solution

x
⌧

(z;u) exists 8⌧ 2 [t, t + T
max

). Moreover, for a compact subset ⌦ ⇢ D, if z 2 ⌦ and

x
⌧

(z;u) 2 ⌦ for all ⌧ 2 [t, T
max

), then T
max

=1.

Proof. The system (3.1) is autonomous, and f +Gu is locally Lipschitz continuous on D
by Lemma 2.6. Then, the proof can be done by the applications of Theorems 3.1 and 3.3

in [32].

Definition 3.2. A policy u(x) is said to be

• stabilizing with respect to a linear subspace S if for any " > 0, there is �(") 2 (0, "]

such that

z 2 BS(�) =) x
⌧

(z;u) 2 BS(") 8⌧ � t;

• asymptotically stabilizing with respect to S if it is stabilizing and there is r > 0 such

that

lim
⌧!1

d(x
⌧

(z;u), S) = 0, 8z 2 BS(r);

• exponentially stabilizing with respect to S if there are r > 0, � > 0 and  > 0 such

that

d(x
⌧

(z;u), S)  �e�(⌧�t)d(z, S), 8⌧ � t, 8z 2 BS(r).

1The exact meaning of the exploration e⌧ will be clear in Chapter 5. Until that, just ignore it.
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If the respective conditions in Definition 3.2 are satisfied for the zero equilibrium space

S = {0
n

}, then we simply say that the policy u(x) is stabilizing, asymptotically stabilizing,

and exponentially stabilizing, respectively.

Remark 3.1. In the case S = {0
n

}, by the first condition in Definition 3.2 and Proposi-

tion 3.1, the existence of the unique solution x
⌧

(z;u) for all ⌧ 2 [t,1) is guaranteed under

a stabilizing policy u(x) since B
0n(�) ✓ B

0n(") and B̄
0n(") is compact. However, in the

general case “0
n

⇢ S”, the existence of the unique solution x
⌧

(z;u) is guaranteed only for

a finite interval [t, T
max

) by Proposition 3.1 since B̄S(") is not compact (it is unbounded).

In this general case, it is just assumed throughout the dissertation that the unique solution

x
⌧

(z;u) exists for any ⌧ 2 [0,1).

In this dissertation, the region of attraction (ROA) R
A

(u) for S = {0
n

} is defined as

R
A

(u) :=
�

z 2 D : x
⌧

(z;u)! 0
n

as ⌧ !1 

for an asymptotically stabilizing policy u(x). Here, the ROA is defined only for the zero

equilibrium space S = {0
n

} for simplicity.

Lemma 3.1. R
A

(u) is open, connected, and invariant. Moreover, the boundary @R
A

(u)

is form by the trajectories x
⌧

(z;u) for z 2 @R
A

(u).

Proof. See Appendix C.16 in [32].

Since 0
n

is the equilibrium point of the dynamical system (3.1), the following lemma

can be directly obtained from Lemma 3.1 and the definition of R
A

(u) for an asymptotically

stabilizing policy u.

Lemma 3.2. R
A

(u) 2 D(D, {0
n

}). That is, R
A

(u) is an open connected subset of D that

contains the origin 0
n

.

3.1 Lyapunov’s Stability Theorems

Lyapunov’s stability theorems [32] are representative tools to investigate the closed-loop

stability of an equilibrium “0
n

” of dynamical systems. In this dissertation, the follow-
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ing generalized Lyapunov’s theorem is established regarding a general linear subspace S.

This general Lyapunov’s theorem includes the usual Lyapunov’s theorem [32] for the zero

equilibrium space S = {0
n

} as a special case.

Theorem 3.1. Given a linear subspace S and a policy u(x) for the controlled system (3.1),

if there exists a C1-positive semi-definite function V : ⌦ ! R
+

, called a Lyapunov func-

tion, on a domain ⌦ 2 D(D, S) such that

1) V (x) = 0() x 2 S;

2) V̇ (x) � 0 for all x 2 ⌦,

where V̇ (x) ⌘ rTV (x)
�

f(x) +G(x)u(x)
�

, then the policy u(x) is stabilizing with respect

to the equilibrium space S. Moreover, if the second condition is strengthened to

2 0) if there is a positive semi-definite function W : ⌦! R
+

such that

(a) W (x) = 0 () x 2 S;

(b) V̇ (x) � �W (x),

then u(x) is asymptotically stabilizing with respect to S. If there are positive constants k̄
v

,

k
v

, k
w

, p > 0 such that for all x 2 ⌦,

k
v

dp(x, S)  V (x)  k̄
v

dp(x, S),

k
w

dp(x, S) W (x)

hold, then u(x) is exponentially stabilizing with respect to S. If ⌦ = D = Rn and the

assumptions hold globally, then u(x) is globally exponentially stabilizing with respect to S.

Proof. Lemma 2.6 and the conditions on V and W imply the existence of class K functions

↵
v

, ↵̄
v

, and ↵
w

all defined in [0, r] for some r > 0 guaranteeing BS(r) ✓ ⌦ such that

↵
v

(d(x, S))  V (x)  ↵̄
v

(d(x, S)), (3.2)

↵
w

(d(x, S)) W (x) (3.3)

for all x 2 BS(r). Then, the proof is completed by applying Theorem 4.1 in [105].

The above generalized rare theorem will be used in Chapter 6. In the other materials, it

is su�cient to use the following Lyapunov’s theorems that states the closed-loop stability
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for the zero equilibrium S = {0
n

}. The proofs can be done by directly applying Theorem 3.1

(for a complete proof, see [32]).

Corollary 3.1. Given a policy u(x) and the subspace S = {0
n

} for the system (3.1), if

there exists a C1-positive definite function V : ⌦! R
+

on a domain ⌦ 2 D(D, {0
n

}) such
that

V̇ (x) � 0 for all x 2 ⌦,

then the policy u(x) is stabilizing. Moreover, if the condition is strengthened to

V̇ (x) � 0 for all x 2 ⌦,

then u(x) is asymptotically stabilizing. In addition to this, if ⌦ = D = Rn and V is radially

unbounded, then u(x) is globally asymptotically stabilizing.

Corollary 3.2. Given a policy u(x) and the subspace S = {0
n

} for the system (3.1), if

there exists a C1-positive definite function V : ⌦! R
+

on a domain ⌦ 2 D(D, {0
n

}) such
that

1) k
v

kxkp  V (x)  k̄
v

kxkp

2) V̇ (x)  �k
w

kxkp

for all x 2 ⌦, where k
v

, k̄
v

, k
w

, and p are some positive constants, then the policy u(x)

is exponentially stabilizing. In addition to this, if ⌦ = D = Rn and the assumptions hold

globally, then u(x) is globally exponentially stabilizing.

3.2 Optimal Control of Dynamical Systems

The optimal control problems considered in this dissertation can be described in a general

form consisting of the input-a�ne dynamics (3.1) and the performance index

V
u

(x
t

) =

Z 1

t

r(x
⌧

,u(x
⌧

)) d⌧, (3.4)

where r(x,u) 2 R is the cost defined as r(x,u) := S(x)+uTR(x)u ⌫ 0 for a positive semi-

definite function S : D ! R
+

and a matrix-valued uniformly bounded smooth function

R : D ! Rm⇥m that is positive definite, uniformly for all x 2 D. When the policy
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u(x) is given and fixed for all ⌧ 2 [t,1), the performance index (3.4) is called the value

function for the given policy. For the existence of V
u

, the policy u(x) needs to stabilize

the system (3.1). However, since this is not su�cient for the existence of V
u

, the concept

of admissibility is introduced as follows.

Definition 3.3. A policy u(x) is admissible with respect to (3.4) and a subspace S if:

1) it is asymptotically stabilizing with respect to S;

2) there exists r
a

> 0 such that V
u

(z) <1 for all z 2 BS(ra).

If the subspace is given by S = {0
n

} and the conditions in Definition 3.3 hold for

S = {0
n

}, then we simply say that u(x) is admissible with respect to (3.4). In addition

to this, if the performance index is clearly given in the context, then we just say in this

dissertation that the policy u(x) is admissible.

The next theorem states the optimality conditions in addition to those for the closed-

loop stability of the general subspace S under a policy u(x).

Theorem 3.2. Consider the optimal control problem (3.1) and (3.4) and suppose that

S(x) in the performance index (3.4) has the following property:

S(x) = 0 () x 2 S.

If there exists a C1-positive semi-definite function V ⇤ : ⌦! R
+

on a domain ⌦ 2 D(D, S)
such that

1) V ⇤(x) = 0() x 2 S;

2) the following HJB equation holds for all x 2 ⌦ :

S(x) +rV ⇤T (x) f(x)� 1

4
rV ⇤T (x)G(x)R�1(x)GT (x)rV ⇤(x) = 0, (3.5)

then, the control input function u⇤(x) given by

u⇤(x) = �1

2
R�1(x)GT (x)rV ⇤(x)

is the optimal admissible policy that minimizes the performance index (3.4), and V ⇤(x) is

the corresponding optimal value function, i.e., 0 � V ⇤ � V
u

for all admissible u.
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Proof. By Lemma 2.4 and the first and second conditions regarding V and S, respectively,

there exist class K functions ↵⇤
v

, ↵̄⇤
v

, and ↵
s

such that

↵⇤
v

(d(x, S)) � V ⇤(x) � ↵̄⇤
v

(d(x, S)),

↵
s

(d(x, S)) � S(x)

holds for all x 2 B̄S(r), where B̄S(r) is a closed ball in the interior of ⌦; the application

of [105, Theorem 4.1] completes the proof.

Theorem 3.2 provides the optimality conditions with respect to the general subspace

S ⇢ Rn and will be used in Chapter 6. In the other parts, we will focus on the optimal

control problems with respect to the equilibrium S = {0
n

}. In this case, Theorem 3.2 can

be simplified as in the following corollary.

Corollary 3.3. Let the subspace S be given by S = {0
n

} and S(x) be positive definite. If

there exists a C1-positive semi-definite function V ⇤ : ⌦ ! R
+

on a domain D(D, {0
n

})
such that the HJB equation (3.5) holds for all x 2 ⌦, then,

u⇤(x) = �1

2
R�1(x)GT (x)rV ⇤(x)

is the optimal admissible policy that minimizes the performance index (3.4), and V ⇤(x) is

the corresponding optimal value function.

In the remaining subsection, we consider the inverse optimal input-dynamics extension

technique under the assumptions that

Assumption 3.1. V ⇤(x) is C2 on B̄S(r), where B̄S(r) is a closed ball in the interior of

the domain of V ⇤.

Assumption 3.2. R(x) is diagonal and G(x)u is decomposed as

G(x)u = G
s

(x)u
s

+G
d

(x)u
d

,

where u
s

2 Rms and u
d

2 Rmd with m
s

+m
d

= m are called the static and dynamic feedback

control inputs, respectively, and G
s

(x) and G
d

(x) are corresponding input-coupling matrix-

valued functions.

35



If R(x) is diagonal, there are diagonal positive definite matrices R
s

(x) and R
d

(x) such

that the HJB equation (3.5) is expressed as

S +rV ⇤T f
s

+
1

4
rV ⇤T G

s

R�1

s

GT

s

rV ⇤ � 1

4
rV ⇤T G

s

R�1

s

GT

s

rV ⇤ = 0, (3.6)

where f
s

(x) := f(x) � 1

2

G
s

(x)R�1

s

(x)GT

s

(x)rV ⇤(x). Hence, under Assumption 3.2, the

optimal policy u⇤ = �1

2

R�1GTrV ⇤ can be decomposed as u⇤ = u⇤
s

+ u⇤
d

, where u⇤
s

and

u⇤
d

are its static and dynamic parts given by

u⇤
s

(x) :=� 1

2
R�1

s

(x)GT

s

(x)rV ⇤(x),

u⇤
d

(x) :=� 1

2
R�1

d

(x)GT

d

(x)rV ⇤(x),

respectively; the HJB equation (3.6) can be rewritten in terms of u⇤
s

as

r
s

(x,u⇤
s

) +rV ⇤T f
s

� 1

4
rV ⇤T G

s

R�1

s

GT

s

rV ⇤ = 0, (3.7)

where r
s

(x,u⇤
s

) := S(x) + u⇤T
s

R
s

(x)u⇤
s

. Keeping in mind these expressions and assuming

that the static feedback control input u
s

is given by u
s

= u⇤
s

(x), we consider the extended

input-a�ne dynamics

8

>

>

<

>

>

:

ẋ = f
s

(x) +G
d

(x)u
d

u̇
d

= v
d

(x̄
d

),

(3.8)

where v
d

2 Rmd is the control policy for the extended dynamics (3.8) and x̄
d

:= col{x,u
d

} 2
Rn+md is its state vector. Defining f̄

s

(x) and B̄
0d

as

f̄
s

(x) :=

2

6

4

f
s

(x)

0
md

3

7

5

and B̄
0d

:=

2

6

4

0
n⇥md

I
md

3

7

5

,

the system (3.8) can be rewritten as

˙̄x
d

= f̄
s

(x) + B̄
0d

v
d

(x̄
d

). (3.9)
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The objective of the inverse optimal input-dynamics extension is to design the extended

dynamic control policy v
d

(x̄
d

) to asymptotically stabilize the extended system (3.8) in an

optimal fashion with respect to the extended subspace S
e

⇢ Rn+md defined as

S
e

:=
n

x̄
d

= (x,u
d

) 2 D ⇥ Rmd : x 2 S and u
d

= u⇤
d

(x)
o

. (3.10)

Since u⇤
d

(x) is a policy, we have u⇤
d

(x) = 0
md whenever x 2 S by Definition 3.1. Hence,

the stabilizing subspace S
e

can be rewritten as

S
e

=
n

(x,u
d

) 2 D ⇥ Rmd : x 2 S and u
d

= 0
n

o

.

The design of v
d

(x̄
d

) will be done based on the �-scaled Q-function Q⇤
d

(x̄
d

;�) for the

dynamic feedback input part u
d

, which is defined as

Q⇤
d

(x̄
d

;�) := �V ⇤(x) +rV ⇤T (x)G
d

(x)u
d

+ uT

d

R
d

(x)u
d

,

where � > 0 is a positive constant. Indeed, Q⇤
d

(x̄
d

;�) satisfies the following properties

1) r
udQ

⇤
d

(x̄
d

;�) = 0
md () u

d

= u⇤
d

(x)

2) lim
�!1

1

�
Q⇤

d

(x̄
d

;�) = V ⇤(x)

that are the similar properties to those of the existing Q-functions (see [19, 25, 98]). For

the statement, under Assumption 3.2 let u
dj

, g
dj

(x), and r
dj

(x) be the j-th element of u
d

,

G
d

(x), and R
d

(x), respectively. That is, u
d

= [u
d1

u
d2

· · · u
dmd

]T ,

G
d

(x) =
h

g
d1

(x) g
d2

(x) · · · g
dmd

(x)
i

,

R
d

(x) = diag{r
d1

(x), r
d2

(x), · · · , r
dmd

(x)}.
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Moreover, define S̄
d

(x̄
d

) 2 R as

S̄
d

(x̄
d

;�) :=�S(x) + uT

d

⌃(x̄
d

;�)u
d

� (rV ⇤)T⌅(x̄
d

)
⇣

f
c

+G
d

u
d

⌘

� uT

d

GT

d

r2V ⇤f
c

,

(3.11)

where

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⌅(x̄
d

) := rG
d

(x)u
d

⌘Pmd
j=1

u
dj

rg
dj

⌃(x̄
d

;�) := �R
d

(x)�GT

d

(x)r2V ⇤(x)G
d

(x)�⌥(x̄
d

)

⌥(x̄
d

) := diag{(rr
d1

)T (f
s

+G
d

u
d

), · · · , (rr
dmd

)T (f
s

+G
d

u
d

)}.

Assumption 3.3. There exist positive constants �, r and class K functions ↵
q

, ↵
s

, defined

on [0, r], such that

1. B̄S(r) 2 D̄(⌦, S), where ⌦ 2 D(D, S) is the domain of V ⇤(x);

2. ↵
q

(d(x, S))  Q⇤
d

(x̄
d

;�) and ↵
s

(d(x̄
d

, S
e

))  S̄
d

(x̄
d

;�), 8x̄
d

= (x,u
d

) 2 B̄S(r)⇥Rmd.

Now, the next theorem provides the inverse optimal policy v⇤
d

(x̄
d

;�) that asymptoti-

cally stabilizes the extended dynamics (3.8) in an optimal fashion.

Theorem 3.3. Let v⇤
d

be the policy for the extended dynamics (3.8) given by

v⇤
d

(x̄
d

;�) = �u⇤
d

(x)� �u
d

(3.12)

for a positive constant � > 0. Then, under Assumptions 3.1, 3.2, and 3.3, the dynamic

policy (6.32) for any � � � > 0 asymptotically stabilizes the extended system (3.8) with

respect to the extended subspace S
e

defined by (3.10). Moreover, it is inverse optimal with

respect to the performance index J(x̄
d

(0),v(·)) given by

V̄
vd(x̄d

(0)) :=

Z 1

0

⇣

S̄
d

(x̄
d

;�) + � · u⇤T
s

(x)R
s

(x)u⇤
s

(x) + ��1 · vT

d

R
d

(x)v
d

⌘

dt, (3.13)

and Q⇤
d

(x̄
d

;�) is the corresponding optimal value function.

Proof. See Appendix D.3.
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3.3 Properties of Value Functions and Hamiltonian

In this and the subsequent sections, we restrict our attention to a class of optimal control

problems (3.1) and (3.4) such that

Assumption 3.4. S = {0
n

} and S(x) is positive definite.

In all of the statements in the two subsequent sections, it is implicitly assumed that S

and S(x) satisfies Assumption 3.4. In this case, the value function V
u

(x) and the Hamilto-

nian of an admissible policy u(x) possess the mathematical properties that are useful in the

design of adaptive optimal control systems. In this section, we investigate those properties,

and some of them are provided solely in this dissertation to the best author’s knowledge.

One of them is the following result regarding the extendability of the admissibility upon

the ROA R
A

(u).

Proposition 3.2. Suppose that u(x) is admissible. Then, V
u

(x) <1 for all x 2 R
A

(u).

Moreover, V
u

is positive definite on R
A

(u) and V
u

(x)!1 as x! @R
A

(u),

Proof. Since u(x) is admissible, it is asymptotically stabilizing. Let z 2 R
A

(u). Then, by

the definition of the ROA and its invariance (see Lemma 3.1), x
⌧

(z;u) 2 R
A

(u) for all

⌧ � t, and there is T
z

> 0 such that x
⌧

(z;u) 2 B
0n(ra) for all ⌧ � t+ T

z

, where r
a

> 0 is

given in Definition 3.3. Hence, one obtains

V
u

(z) =

Z

t+Tz

t

r(x
⌧

,u(x
⌧

)) d⌧ +

Z 1

t+Tz

r(x
⌧

,u(x
⌧

)) d⌧ <1, (3.14)

where x
⌧

⌘ x
⌧

(z;u). Here, the first integral is finite since x
⌧

2 R
A

(u) and it is an integral

over a finite time interval, and so is the second integral since it is equal to V
u

(x
t+Tz) which

is finite due to x
t+Tz 2 B

0n(ra) and the admissibility of u. Since z 2 R
A

(u) is arbitrarily

given, one has V
u

(z) <1 for all z 2 R
A

(u). Next, since r(x,u(x)) is positive definite on

D, so is V
u

on R
A

(u) ✓ D by (3.4), where V
u

is finite on R
A

(u) by the first argument.

Finally, assume z 2 @R
A

(u). Then, by Lemma 3.1, x
⌧

(z;u) 2 @R
A

(u) 8⌧ � t, and it

never converges to 0
n

. Let d 2 (0,1] be given by d := inf
x2@RA(u)

r(x,u(x)). Then, V
u

(z)

for z 2 @R
A

(u) satisfies

V
u

(z) =

Z 1

t

r(x
⌧

,u(x
⌧

)) d⌧ �
Z 1

t

✓

inf
x2@RA(u)

r(x,u(x))

◆

d⌧ = d ·
Z 1

t

1 d⌧ =1,
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implying that V
u

(z) =1 for all z 2 @R
A

(u). Therefore, the continuity of V
u

(x) on R
A

(u)

implies that V
u

(z)!1 as z! @R
A

(u), and the proof is completed.

For an admissible policy u, let Ck

0

(u), Ck

0

+(u), and Ck

L

+(u) (k = 0, 1) be the function

spaces defined on the ROA R
A

(u) as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Ck

0

(u) := {V 2 Ck(R
A

(u)) : V (x) 2 R and V (0
n

) = 0},

Ck

0

+(u) := {V 2 Ck(R
A

(u)) : V (x) 2 R and V � 0},

Ck

L

+(u) := {V 2 Ck

L

(R
A

(u)) : V (x) 2 R and V � 0},

For instance, C1

L

+(u) is the set of all positive definite functions V : R
A

(u) ! R whose

first derivatives are locally Lipschitz continuous. These function spaces have the following

inclusions.

C1

L

+(u) ⇢ C1

0

+(u) ⇢ C1

0

(u)

� � �

C0

L

+(u) ⇢ C0

0

+(u) ⇢ C0

0

(u)

(3.15)

by (2.9) and positive definiteness. By Proposition 3.2, one can see that V
u

(x) is finite for

all x 2 R
A

(u) and at least belongs to C0

0

+(u). Moreover, Proposition 3.2 and Lemma 2.4

imply that for any r
u

> 0 and any admissible policy u satisfying B̄
0n(ru) ⇢ R

A

(u), there

exist ↵
u

, ↵̄
u

2 K, defined on [0, r
u

], such that

↵
u

(kxk)  V
u

(x)  ↵̄
u

(kxk) (3.16)

for all x 2 B̄
0n(ru). Similarly, since S(x) is positive definite on D, for any r

d

> 0 satisfying

B̄
0n(rd) ⇢ D, there exist ↵

s

, ↵̄
s

2 K, defined on [0, r
d

], such that

↵
s

(kxk)  S(x)  ↵̄
s

(kxk) (3.17)

holds for all x 2 B̄
0n(rd). Since RA

(u) ✓ D always holds, r
d

> 0 can be chosen su�ciently

large to satisfy 0 < r
u

 r
d

for all admissible policies u. These class K functions in (3.16)
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and (3.17) will be used in the analysis of the IRL algorithms in Chapter 5.

Next, define the Hamiltonian H(x,u,p) as

H(x,u,p) := r(x,u) + pT (f(x) +G(x)u), (3.18)

and assume that u is admissible. Then, if V
u

2 C1

0

+(u), it satisfies the following Hamilto-

nian equation for the nonlinear system (3.1):

H(x,u(x),rV
u

(x)) = 0, 8x 2 R
A

(u), (3.19)

which is actually the infinitesimal version of (3.4) and implies

V̇
u

(x
⌧

) ⌘ (rV
u

(x
⌧

))T
�

f(x
⌧

) +G(x
⌧

)u(x
⌧

)
�

= �r(x
⌧

,u(x
⌧

)) � 0. (3.20)

for all x 2 R
A

(u). That is, the Hamiltonian equation (3.19) is actually a Lyapunov equa-

tion, where V
u

(x) is the positive definite Lyapunov function for the system (3.1). More-

over, the solution rV
u

to the Hamiltonian equation (3.19) is unique over the function

space C1

0

(u).

Theorem 3.4. For an admissible policy u, if V
u

2 C1

0

+(u), it is the unique solution to

the Hamiltonian equation (3.19) over the function space C1

0

(u).

Proof. The proof will be done by contradiction. Assume for an admissible policy u that

there exists another function V 2 C1

0

(u) satisfying the Hamiltonian equation

H(x,u(x),rV (x)) = 0 8x 2 R
A

(u), V (0
n

) = 0. (3.21)

From (3.21), r(x,u) � 0 (by Assumption 3.4), and the definition of H, we have

(rV (x))T (f(x) +G(x)u(x)) � 0, 8x 2 R
A

(u) \ {0
n

},

which again implies rV (x) 6= 0
n

(and f(x) + G(x)u(x) 6= 0
n

) 8x 2 R
A

(u) \ {0
n

}.
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Subtracting (3.21) from (3.19) yields

H(x
⌧

,u(x
⌧

),rV (x
⌧

))�H(x
⌧

,u(x
⌧

),rV
u

(x
⌧

))

= [rV (x
⌧

)�rV
u

(x
⌧

)]T (f(x
⌧

) +G(x
⌧

)u(x
⌧

)) = 0, (3.22)

which holds 8x
⌧

2 R
A

(u). Since R
A

(u) is an invariant set by Lemma 3.1, z 2 R
A

(u)

implies x
⌧

(z;u) 2 R
A

(u) for all ⌧ � t. Therefore, the time integration of (3.22) over

the entire interval [0,1) yields V (z) = V
u

(z) + c for a constant c, 8z 2 R
A

(u). Here,

V (0
n

) = V
u

(0
n

) = 0 results in c = 0 and thereby, V (z) = V
u

(z) is obtained for all

x 2 R
A

(u), a contradiction. Therefore, the value function V
u

is the unique solution of

(3.19) over the function space C1

0

(u), the completion of the proof.

The inclusion (3.15) and Theorem 3.4 imply the following corollary.

Corollary 3.4. If the value function V
u

for an admissible policy u is C1

L

+(u), then it is

the unique solution to the Hamiltonian equation (3.19) over C1

L

+(u).

The objective of the adaptive optimal control in this dissertation is to find the best ad-

missible policy that minimizes (3.4), and the corresponding optimal value function V ⇤(x).

Minimizing the Hamiltonian H(x,u,rV ⇤) with respect to u, one can obtain the policy

u⇤(x) represented as

u⇤(x) = �1

2
R�1(x)GT (x)rV ⇤(x), (3.23)

Here, the admissibility and optimality of u⇤ given by (3.23) can be proven by the appli-

cation of the following theorem.

Theorem 3.5. For an admissible policy u, let V
u

: R
A

(u)! R be its corresponding value

function. If V
u

2 C1

L

+(u), then any locally Lipschitz continuous function u+ : ⌦! Rn on

a domain ⌦ 2 D(D, R
A

(u)) satisfying

u+(x) := �1

2
R�1(x)GT (x)rV

u

(x) on R
A

(u) (3.24)

is an admissible policy (restricted on ⌦). Moreover,

• R
A

(u) is an invariant subset of the ROA R
A

(u+) under u+, i.e.,

z 2 R
A

(u) =) x
⌧

(z;u+) 2 R
A

(u) 8⌧ � t; (3.25)
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• for all x 2 R
A

(u), the value function V
u

+(x) is finite and satisfies

0 � V
u

+(x)  V
u

(x) <1. (3.26)

Proof. First, “1

2

R�1GTrV
u

” in (3.24) is locally Lipschitz continuous by Lemma 2.6 since

so are R�1, G and rV
u

(* V
u

2 C1

L

+(u)). Furthermore, u+(0
n

) = 0
m

results from

Lemma 2.3 and (3.24). Hence, u+ is a policy. To show the admissibility of u+, consider the

value function V
u

(x) as a Lyapunov function candidate for the policy u+. Di↵erentiating

V
u

(x) with respect to the system ẋ = f(x) + g(x)u+(x) yields

V̇
u

(x;u+) ⌘ rTV
u

(x) · �f(x) + g(x)u+(x)
�

= �S(x)� uT (x)R(x)u(x)� 2u+T (x)R(x)(u+(x)� u(x)), 8x 2 R
A

(u),

where (3.20) and (3.24) are substituted in the second equality, and x ⌘ x
⌧

(z;u+). Then,

the application of Young’s inequality 2xTRy  xTRx+ yTRy for x,y 2 Rm yields

V̇
u

(x)  �r(x,u+(x)) � 0, 8x 2 R
A

(u). (3.27)

Therefore, by Corollary 3.1, the policy u+ given by (3.24) is asymptotically stabilizing.

To show the remaining part, fix z 2 R
A

(u). Then, by Proposition 3.2, there is d > 0

such that the compact subset ⌦
d

(u) ✓ R
A

(u) defined as

⌦
d

(u) := {x 2 D : V
u

(x)  d}

contains z in its interior. Moreover,

• ⌦
d

(u) is also invariant under the policy u+ by (3.27), where x ⌘ x
⌧

(z;u+); this

means that z 2 ⌦
d

(u) =) x
⌧

(z;u+) 2 ⌦
d

(u) 8⌧ � t;

• since V
u

2 C1

L

+(u) and ⌦
d

(u) is a compact subset of R
A

(u) ✓ D, rV
u

(x) exists and

is finite for all x 2 ⌦
d

(u), meaning that so is V̇
u

(x).

Therefore, one can integrate (3.27) from ‘t = 0’ to ‘1’ to obtain

V
u

+(z) =

Z 1

0

r(x
⌧

(z;u+),u+(x
⌧

(z;u+))) d⌧  �
Z 1

0

V̇
u

(x
⌧

(z,u+)) d⌧

= V
u

(z)� lim
⌧!1

V
u

(x
⌧

(z,u+)) <1.

In the last inequality, we have used V
u

(z) < 1 and lim
⌧!1 V

u

(x
⌧

(z,u+)) = 0. Here, by

asymptotic stability, lim
⌧!1 x

⌧

(z,u+) = 0
n

holds (* z 2 ⌦
d

(u)). Hence, by the continuity
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of V
u

(z) and V
u

(0
n

) = 0 (see Lemma 3.2 and Definition 2.5), V
u

(x
⌧

(z,u+))! 0 as ⌧ !1.

Since all of these hold for any z 2 R
A

(u), we have (3.25) and, for all x 2 R
A

(u), (3.26)

holds. This completes the proof.

Corollary 3.5. If V ⇤(x) is the optimal value function whose derivatives are Lipschitz

continuous on its domain, then u⇤(x) given by (3.23) is the optimal admissible policy.

Proof. Theorem 3.5 implies that u⇤(x) given by (3.23) is an admissible policy and its

value function, say V +(x), satisfies 0 � V +(x)  V ⇤(x). Since V ⇤(x) is the optimal,

V +(x) cannot be less than V ⇤(x), so we have V + = V ⇤.

Remark 3.2. The contribution in this section is to investigate the properties of the value

functions and Hamiltonian on the ROAs, where Proposition 3.2 plays a central role in

extending the existing results in the literatures [45,46,106] to Theorem 3.5. This contribu-

tion on the investigation of the relations between the value function domain and the ROA

will be used to propose the global version of policy iteration and IRL algorithms, which is

another sole contribution of this dissertation.

Substituting (3.23) into (3.19) and rearranging the equation yield the well-known HJB

equation (3.5). Hence, the optimal policy given in (3.23) can be obtained by solving the

HJB equation (3.5) numerically or analytically and then substituting V ⇤(x). All of the IRL

methods shown in Chapters 4, 4.5, and 5 are actually the online methods to solve the HJB

equation (3.5), while the approach in Chapter 6 analytically finds the solution of the in-

verse optimal HJB equation (3.5) corresponding to the given well-designed asymptotocally

stabilizing policy.

3.4 Policy Iteration on the Region of Attractions

The HJB equation (3.5) is a partial di↵erential equation of dimension n, so its analytical

solution is very hard and, in some cases, impossible to obtain. Due to this reason, a number

of numerical methods have been proposed to solve the HJB equation, e.g., [45,46,48,106–

109]. policy iteration (PI) is one of these numerical methods that successively updates the

value function and the policy by iterations to obtain the optimal value function V ⇤(x).

This idea of PI is the basic concepts of IRLs presented in this dissertation, and its direct
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extension gives birth to integral PI (I-PI) (see Sections 4.1 and 5.1 for more details), which

is one of the fundamental IRL methods from which all of the IRL methods in Chapter 5

are derived.

In this section, using the properties of value functions shown in the previous section,

I propose a PI algorithm, called ideal PI, that evaluates the value function on the DOA

for the corresponding policy. The proposed one can be considered the extension of the

domain of the existing local PI [106] upto the ROAs. Here, this extension to the ROA and

its analytical results are also the sole contribution of this dissertation, by which the IRL

methods shown in the previous work [97] is extended to the ROAs.

Algorithm 3.1 describes the proposed ideal PI, where it is assumed that priori to policy

evaluation at each i-th iteration, the ROA R
A

(u
i

) of the i-th policy is exactly known, so

that the information regarding it can be used in the algorithm. The main part of the

ideal PI consists of the two consecutive steps named policy evaluation (line 3) and policy

Algorithm 3.1: Ideal Policy Iteration

Input: an initial admissible policy u
0

: D ! Rm.

Output: the optimal solution (u⇤,V⇤) satisfying (3.23) and (3.5).

1 i 0;

2 repeat

3 Policy Evaluation: find the value function V
ui : RA

(u
i

)! R that belongs to

C1

L

+(ui

) and satisfies

H(x,u
i

(x),rV
ui(x)) = 0 8x 2 R

A

(u
i

); (3.28)

4 Policy Improvement: update the next policy u
i+1

: ⌦! Rn on a domain

⌦ 2 D(D, R
A

(u
i

)) whose restriction on R
A

(u
i

) satisfies

u
i+1

(x) = �1

2
R�1(x)GT (x)rV

ui(x) 8x 2 R
A

(u
i

); (3.29)

5 i i+ 1;

until6 convergence is met.
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improvement (line 4). The policy evaluation is the procedure to solve the Hamiltonian

equation (3.19) on the domain R
A

(u) for the current policy u = u
i

, which yields the

corresponding value function V
ui : RA

(u
i

)! R that belongs to the function space C1

L

+(ui

);

the policy improvement is the update procedure to yield the next policy u
i+1

: ⌦ ! Rm

on a domain ⌦ 2 D(D, R
A

(u
i

)) that satisfies u
i+1

(x) = u+(x) for all x 2 R
A

(u
i

), where

u+ is given by (3.24) in Theorem 3.24. To yield the optimal solution (u⇤, V ⇤), these two

procedures are repeated one after another until the convergence is met.

By the repetitive applications of Theorem 3.22 and Theorem 3.24 one after another to

the sequences
�

V
ui

 1
i=0

and
�

u
i

 1
i=0

generated by the ideal PI, the following corollary can

be obtained.

Corollary 3.6. The sequences of value functions
�

V
ui

 1
i=0

and policies
�

u
i

 1
i=0

, both

generated by the ideal PI, have the followings:

1. the policy u
i

is admissible for all i 2 Z
+

;

2. for each i 2 Z
+

, R
A

(u
i

) is the invariant subset of R
A

(u
i+1

), i.e.,

z 2 R
A

(u
i

) =) x
⌧

(z;u
i+1

) 2 R
A

(u
i

) 8⌧ � t; (3.30)

3. each value function V
ui is the unique solution to the Hamiltonian equation (3.28) in

C1

L

+(ui

), and for any i 2 Z
+

and any N 2 N,

0 � V ⇤(x)  V
ui+N (x)  · · ·  V

ui+1(x)  V
ui(x) <1 8x 2 R

A

(u
i

). (3.31)

Remark 3.3. In Corollary 3.6, V ⇤(x)  V
ui+N (x) in (3.31) definitely holds since V ⇤ is

the optimal minimizing value function. Moreover, the second and third statements imply

that the DOAs R
A

(u
i

) satisfy R
A

(u
0

) ✓ · · · ✓ R
A

(u
i

) ✓ R
A

(u
i+1

) ✓ · · · ✓ R
A

(u⇤).

The ideal PI in Algorithm 3.1 requires the ROA R
A

(u
i

) at each i-th iteration, which is

di�cult to obtain and makes the algorithm complex, except the simple case R
A

(u
i

) = Rn;

even for this simple case, the evaluations of (V
ui ,ui

) over the whole state space Rn is a

formidable task. Hence, the ideal PI is approximately done in practice by performing the

policy evaluation and improvement only on a bounded subset of the initial ROA R
A

(u
0

)

that is connected and contains 0
n

in its interior [48, 49,106].
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To investigate the local convergence behavior of the ideal PI, let ⌦ be any compact

subset of R
A

(u
0

). Then, since the ROA is expanded as the iteration goes on (Remark 3.3),

we have ⌦ ⇢ R
A

(u
i

) for all i 2 Z
+

. Moreover, by the third statement of Corollary 3.6, the

sequence of value functions {V
ui}1

i=0

generated by the ideal PI is monotonically decreasing

on ⌦. That is,

0 � V ⇤(x)  · · ·  V
ui+1(x)  V

ui(x)  · · ·  V
u0(x) <1 8x 2 ⌦. (3.32)

Since (3.32) states that V
ui is monotonically decreasing and lower-bounded by zero, there

is a function V̂ : ⌦! R
+

to which V
ui converges pointwisely on ⌦. For the convergence of

V
ui ! V ⇤, however, some additional conditions are necessarily imposed as shown in the

next theorem.

Theorem 3.6. Let F : C1

L

+(⌦)! C1

L

+(⌦) be the PI map defined as

F{V̂
ui+1} := V̂

ui ,

where V̂
ui is the restriction of the value function V

ui on ⌦. If F is continuous and V̂

belongs to C1

0

+(⌦), then V̂
ui ! V ⇤ uniformly on ⌦.

Proof. Since V̂ 2 C1

0

+(⌦), it is continuous on ⌦, so the convergence V̂
ui ! V̂ is uniform

on the compact set ⌦ by Dini’s theorem. Similarly, we have the uniform convergence

F(V̂
ui) = V̂

ui+1 ! V̂ on ⌦. Therefore, F(V̂ ) = V̂ by continuity of F , i.e., V̂ is the fixed

point of F . Since the fixed point of F corresponds to the optimal solution V ⇤ as shown in

Corollary 3.5, we have V̂ = V ⇤ on ⌦.

Remark 3.4. Notice that V
ui(x) and u

i

(x) in Algorithm 3.1 are always finite on a compact

set ⌦ of R
A

(u
0

). Hence, some finite convergence criterion can be established in line 6 of

Algorithm 5.1 to check the convergence, for example,

sup
x2⌦
ku

i

(x)� u
i�1

(x)k < ",

where 0 < "⌧ 1 is an error tolerant constant.
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Chapter 4

Classifications, Stability, and

Convergence of Fundamental IRL

This chapter introduces and newly classifies the fundamental IRL methods applied to the

CT LQR problem:

minimize V
u

(x
t

) =

Z 1

t

�

xT

⌧

Sx
⌧

+ uT

⌧

Ru
⌧

�

d⌧ (4.1)

subject to ẋ
⌧

= Ax
⌧

+Bu(x
⌧

), x(t) = z 2 Rn, S = {0
n

} (4.2)

and then analyze them regarding their stability and convergence. Here,

• (A,B) is a stabilizable pair of the matrices A 2 Rn⇥n and B 2 Rn⇥m;

• (S,A) is a detectable pair of the matrices S ⌫ 0
n⇥n

and A 2 Rn⇥n;

• u(x) 2 Rm is a linear policy of the form u(x) = �Kx for some K 2 Rm⇥n.

Definition 4.1. If a control input function u : Rn ! Rm is given in a form u(x) = �Kx

for some constant gain matrix K 2 Rm⇥n, then it is called a linear policy. We also say

that the gain matrix K 2 Rm⇥n in u = �Kx is a linear policy.

For notational convenience, the matrices A
K

and S
K

⌫ 0
n⇥n

for a linear policy K

are defined as A
K

:= A �BK and S
K

:= S +KTRK, respectively. The classical linear

control theory shows that if the closed-loop system matrix A
K

is Hurwitz, then the linear

policy K exponentially stabilizing the linear system (4.2). Here, we call this kind of policy

Hurwitz rather than exponentially stabilizing.

Definition 4.2. A linear policy u = �Kx is said to be Hurwitz, or a Hurwitz poicy, if

the closed-loop matrix A
K

is Hurwitz.
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When the linear policy u is given and fixed, then the performance index V
u

(x
t

) in (4.1)

is called a value function for the given linear policy. Using the matrix notations A
K

and

S
K

, the value function V
u

(x
t

) for a linear policy u = �Kx can be expressed as

V
u

(x
t

) = xT

t

✓

Z 1

t

eA
T
K(⌧�t)S

K

eAK(⌧�t) d⌧

◆

x
t

⌘ xT

t

P
K

x
t

,

where P
K

⌫ 0
n⇥n

is defined as

P
K

:=

Z 1

0

eA
T
K⌧S

K

eAK⌧ d⌧. (4.3)

In this LQR case, the value function V
u

(x) = xT

t

P
K

x
t

is positive semi-definite since so

is S. If S is positive definite, then it guarantees the positive definiteness of P
K

for any

Hurwitz policy K. Moreover, (4.3) is always finite as lone as K is Hurwitz, so closed-loop

stability always implies admissibility.

The LQR problem (4.1) and (4.2) is the special case of the nonlinear optimal control

problem (3.1) and (3.4) with f(x) = Ax, G(x) = B, S(x) = xTSx, R(x) = R, and

S = {0
n

}. On the other hand, it is slightly generalized from Assumption 3.4. in that S is

positive semi-definite. By substituting f(x) = Ax, G(x) = B, rV
u

(x) = 2Px, u = �Kx,

and r(x,u) = xTS
K

x, the Hamiltonian equation (3.19) becomes the Lyapunov matrix

equation L(K,P
K

) = 0
n⇥n

,1 where the Lyapunov operator L(K,P) is defined as

L(K,P) := AT

K

P+PA
K

+ S
K

. (4.4)

Moreover, the policy update rule (3.24) can be expressed as u+ = �K+x, where K+ :=

R�1BTP
K

; the HJB equation (3.5) becomes the standard algebraic Riccati equation

(ARE) R(P⇤) = 0, where the Riccati operator R(P) is defined as

R(P) := ATP+PA�PBR�1BTP+ S

1L(K,PK) = 0n⇥n can be easily verified by substituting (4.3) into L(K,PK) and using the defini-
tion (4.4) and standard calculus.
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and satisfies R(P) = L(K,P)|
K=R

�1
B

T
P

; P⇤ and K⇤ are optimal matrix solutions that

satisfy V ⇤(x) = xTP⇤x and u⇤ = �K⇤x, respectively. By the stabilizability and de-

tectability of (S,A,B), there exists the unique positive semi-definite solution P⇤ of the

ARE R(P⇤) = 0.

The fundamental IRL algorithms introduced in this chapter are integral PI (I-PI),

integral generalized PI (I-GPI), integral value iteration (I-VI), and infinitesimal GPI; the

sole contribution of this chapter is to suggest the new classification of these fundamental

IRL algorithms shown in Section 4.4, and then analyze their stability and convergence

along the new classifications.

Before the explorations of these IRL algorithms, it is necessary to review the PI for

LQR problems (4.1) and (4.2) shown in Algorithm 4.1, which is the counterpart of the

ideal PI described in Algorithm 3.1. This basic PI is closely related with all of the IRL

methods. Roughly, Algorithm 4.2 can be considered as a revolving process to solve the

Lyapunov equation L(K
i

,P
Ki) = 0

n⇥n

in policy evaluation and update K
i+1

by the rule

K
i+1

= R�1BTP
Ki in policy improvement. Since a Hurwitz policy is always admissible

in the LQR case, the ideal PI applied to the LQR problems just needs a initial Hurwitz

policy, rather than the admissible one. So, applying Corollary 3.6 and Theorem 3.6 to the

ideal PI for LQR problems, we obtain the following monotone convergence result.

Corollary 4.1. Assume that S is positive definite. Then, the matrix sequences {P
Ki}1

i=0

and {K
i

}1
i=0

generated by Algorithm 4.1 have the followings.

1. K
i

is Hurwitz for all i 2 Z
+

;

2. (P
i

,K
i

) monotonically converges to the optimal solution (P⇤,K⇤) in a sense that

8

<

:

0
n⇥n

� P⇤ � · · · � P
Ki+1 � P

Ki � · · · � P
K0 .

lim
i!1P

Ki = P⇤ and lim
i!1K

i

= K⇤.
(4.5)

Remark 4.1. The statement in Corollary 4.1 is also proven in [93,110,111] for a positive

semi-definite matrix S. In addition, Kleinman has proven in his literature [110] that the

convergence is quadratic, so there is  > 0 such that kP
Ki+1 � P⇤k  kP

Ki � P⇤k2 for
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Algorithm 4.1: Ideal Policy Iteration for LQR Problems

Input: an initial Hurwitz policy K 2 Rm⇥n.

Output: (K⇤,P⇤) satisfying K⇤ = R�1BTP⇤ and R(P⇤) = 0.

1 i 0;

2 repeat

3 Policy Evaluation: find the value function matrix P
Ki 2 Rn⇥n satisfying

L(P
Ki) = 0

n⇥n

;

4 Policy Improvement: update the next policy K
i+1

2 Rm⇥n by

K
i+1

= R�1BTP
Ki ;

5 i i+ 1;

until6 convergence is met.

all i 2 Z
+

; in fact, the I-PI for LQR is equivalent to the Newton method of the form

P
Ki+1 = P

Ki +
�L0

Ki,PKi

��1L(K
i

,P
Ki), (4.6)

where L0
Ki,PKi

is the Frechet derivative of L(K
i

,P
Ki) taken with respect to P

Ki. Since the

nonlinear optimal control problem (3.1) and (3.4) under Assumption 3.4 can be approxi-

mated as an LQR problem (4.1) and (4.2) near the origin 0
n

, this quadratic convergence

of PI for LQR problems also provides the same convergence property for the ideal PI

(Algorithm 3.1) in a local region near the origin 0
n

.

Remark 4.2. While Algorithm 4.1 is an o✏ine method to solve the LQR problems and

needs the exact information of the matrices A and B, the fundamental IRL methods in

this chapter can be implemented in online fashion and does not require the knowledge of

the system matrix A.

Throughout this chapter, the closed-loop matrix A
Ki generated by PI or any IRL

methods is denoted by A
i

⌘ A
Ki for notational convenience.
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Algorithm 4.2: Integral Policy Iteration for LQR Problems

Input: an initial Hurwitz policy u
0

= �K
0

x (K 2 Rm⇥n).

Output: (K⇤,P⇤) satisfying K⇤ = R�1BTP⇤ and R(P⇤) = 0.

1 i 0;

2 repeat

3 Policy Evaluation: find the value function V
ui(x) = xTP

Kix satisfying

V
ui(xt

) =

Z

t+Ts

t

xT

⌧

S
Kix⌧

d⌧ + V
ui(xt+Ts), 8xt

2 Rn, (4.7)

where x
⌧

= eAi(t�⌧)x
t

;

4 Policy Improvement: update the next policy u
i+1

= �K
i+1

x by

K
i+1

= �R�1BTP
Ki ; (4.8)

5 i i+ 1;

until6 convergence is met.

4.1 Integral Policy Iteration

I-PI is the most fundamental IRL algorithm that can be directly obtained from Algo-

rithm 4.1. By integrating the Hamiltonian equation xTL(P
Ki)x = 0 in time from t to

t + T
s

along the trajectory generated by the linear system ẋ = A
i

x ⌘ (A � BK
i

)x and

then applying Lemma 2.2, one can show that

xT

t

eA
T
i TsP

Kie
AiTsx

t

� xT

t

P
Kixt

=

Z

t+Ts

t

xT

⌧

(AT

i

P
Ki +P

KiAi

)x
⌧

d⌧

= �
Z

t+Ts

t

xT

⌧

S
Kix⌧

d⌧.

Substituting x
t+T

= eAiTx
t

and rearranging the equation yields the following temporal

di↵erence (TD) formula:

xT

t

P
Kixt

=

Z

t+T

t

xT

⌧

S
Kix⌧

d⌧ + xT

t+T

P
Kixt+T

. (4.9)
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Therefore, we obtain the I-PI for LQR problems (Algorithm 4.2) by replacing the Lyapunov

matrix equation in policy evaluation of Algorithm 4.1 by (4.9) that will be solved in the

algorithm to uniquely determine the matrix P
Ki . All of the other parts are same to the

ideal PI applied to LQR problems (Algorithm 4.1).

Remark 4.3. Since I-PI (Algorithm 4.2) is inherently equal to Algorithm 4.1, it possesses

the same Hurwitz and 2nd-order monotone convergence properties described in Corol-

lary 4.1 and Remark 4.1. Moreover, I-PI can be online implementable without knowing

the system matrix A (see [111]) while the ideal PI (Algorithm 4.1) cannot as mentioned in

Remark 4.2. All of the IRL methods in this dissertation can be implemented in a similar

manner to I-PI without knowing the drift dynamics, i.e., the system matrix A, and hence

can be considered a class of partially model-free adaptive optimal control methods.

4.2 Integral Generalized Policy Iteration

I-PI presented in the previous section provides the 2nd-order convergence speed as ex-

plained in Remark 4.3 and the policy is always improved as shown in (4.5) However, I-PI

needs the initial Hurwitz policy to run, and its policy evaluation step can be computation-

ally intractable when the di↵erence �(x
t

)� �(x
t+Ts) is not excited but remains constant

for a long period. Here, �(x) 2 RN is the activation function that approximately express

the value function as V
ui(x) ⇡ wT

i

�(x) for some weight vector w
i

2 RN .

To overcome these limitations of I-PI, a class of IRL algorithms known as integral

generalized PI (I-GPI) is proposed in [49]. Actually, I-GPI contains the other fundamental

IRL methods—I-PI, I-VI, and infinitesimal GPI—as special or limiting cases, and the

idea is to approximate the I-TD equation (4.7) by the finite k-number of Bellman fixed

iterations, where k 2 N is called the iteration horizon. Actually, this idea is originated

from the similar concept of modified PI [35,36], where the TD equation for a finite Markov

decision process (MDP) was approximated by the finite number of Bellman fixed iterations.

Unlike I-PI, the I-GPI algorithm does not require any initial Hurwitz policy and instead of

the di↵erence “�(x
t

)� �(x
t+Ts)”, the excitation of �(x

t

) itself is su�cient for the I-GPI
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Algorithm 4.3: Generalized Integral Policy Iteration for LQR Problems

Input:

• an initial policy u
0

= �K
0

x not necessarily Hurwitz;

• an initial value function matrix P
0

⌫ 0
n⇥n

.

Output: (K⇤,P⇤) satisfying K⇤ = R�1BTP⇤ and R(P⇤) = 0.

1 i 0;

2 repeat

Approximate Policy Evaluation:

3 V
i|0(x) xTP

i

x;

4 for j = 0, 1, 2, · · · , k � 1 do

5 find the next approximation V
i|j+1

(x) := xTP
i|j+1

x by solving

V
i|j+1

(x
t

) =

Z

t+Ts

t

xT

⌧

S
Kix⌧

d⌧ + V
i|j(xt+Ts), (4.10)

for all x
t

2 Rn, where x
⌧

= eAi(t�⌧)x
t

;

6 P
i+1

 P
i|k;

7 Policy Improvement: update the next policy u
i+1

= �K
i+1

x by

K
i+1

= R�1BTP
i+1

; (4.11)

8 i i+ 1;

until9 convergence is met.

algorithm to run.

The I-GPI algorithm for LQR problems is shown in Algorithm 4.3. In approximate

policy evaluation (lines 3–6), the agent generates the finite matrix sequence {P
i|j}k

j=0

that

sequentially satisfies P
i|0 = P

i

and (4.10) for all j 2 {0, 1, 2, · · · , k � 1} and all x
t

2 Rn.

Then the next value function matrix is given by P
i+1

= P
i|k. The policy improvement of I-

GPI (line 7) is same to that of I-PI, but the agent updates the next policy u
i+1

using P
i+1

instead. These revolving policy evaluation and improvement steps are repeated again and

again until convergence as the PI and I-PI methods in the previous two sections. Notice

that P
i+1

6= P
Ki in general.

When it comes to the convergence of I-GPI, Vrabie [51] has shown in a nonlinear
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optimal control framework that if u
i

is admissible, the approximated value function V
i|k

obtained in policy evaluation converges to the exact one V
ui as k !1. This implies that

I-GPI with an initial admissible policy becomes I-PI in the limit k !1. In LQR case, this

means that P
i|k converges to P

Ki as k !1 under a Hurwitz policy K
i

, so Algorithm 4.3

with k = 1 under an initial Hurwitz policy becomes equivalent to Algorithm 4.2. These

convergence characteristics will be revisited in Section 4.4, where a new classification of

the IRL methods is given with respect to the update horizon } 2 R
+

defined as } := kT
s

.

4.3 Integral Value Iteration and Infinitesimal GPI

Integral value iteration (I-VI) is referred to as the I-GPI algorithm with k = 1 that

executes the Bellman iteration (4.10) only one time at each iteration. Therefore, I-VI has

the minimum computational costs while I-PI (I-GPI with k = 1) requires theoretically

the infinite number of Bellman iterations in policy evaluation. With this respect, the I-GPI

has the two extreme tips—I-VI and I-PI corresponding to the minimum and maximum

computational costs, respectively.

The policy evaluation of I-VI at i-th iteration can be viewed as a procedure to yield

P
i+1

⌫ 0
n⇥n

that satisfies

xT

t

P
i+1

x
t

=

Z

t+Ts

t

xT

⌧

S
Kix⌧

d⌧ + xT

t+Ts
P

i

x
t+Ts (4.12)

for all x
t

2 Rn. Substituting x
⌧

= eAi(⌧�t)x
t

(⌧ 2 [t, t + T
s

]) into (4.12) and rearranging

it, we obtain the matrix formula “P
i+1

� eA
T
i TsP

i

eAiTs =
R

Ts

0

eA
T
i ⌧S

Kie
Ai⌧ d⌧,” which

can be rewritten as

P
i+1

�P
i

=

Z

Ts

0

e
A

T
Ki

⌧L(K
i

,P
i

)eAKi
⌧ (4.13)

by applying Lemma 2.1. Assuming K
0

= R�1BTP
0

, then we have L(K
i

,P
i

) = R(P
i

) for

all i 2 Z
+

. So, dividing both sides of (4.13) by T
s

and then limiting T
s

! 0 yields the
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following forward-in-time di↵erential Riccati equation (DRE)

Ṗ
t

= R(P
t

), (0  t <1), (4.14)

which is the infinitesimal version of I-VI (T
s

! 0), and we call it in this dissertation

“infinitesimal GPI” for LQR problems. In this limit case, under the zero initial condition

P
0

= 0
n⇥n

, it has been shown that P
t

generated by the forward-in-time DRE monoton-

ically converges to P⇤ with the monotonicity 0
n⇥n

� P
t1 � P

t2 � P⇤ for 0  t
1

 t
2

[104, Theorem 16.4.3]. This type of monotone convergence is called VI-mode convergence

and will be revisited and generalized in Section 4.5.

4.4 Equivalence Classes and Classifications of IRLs

By the mathematical analysis in terms of the update horizon } 2 R
+

given by } = kT
s

,

the product of the iteration horizon k 2 N and the time horizon T
s

2 R
+

, this section

shows that any I-GPI algorithms that have the same update horizon } can be considered

the same in the iteration domain, and that “infinitesimal GPI” and I-PI are the special

cases of I-GPI in the limit } ! 0 and } ! 1, respectively. From this result, the IRLs

presented in this chapter are classified in terms of the update horizon }.

The analysis will be done in LQR frameworks based on the dynamic programming

(DP) operator T Ts
K

: X ! X, regarding the linear dynamics (4.2), defined on the space X

of continuous functionals V : Rn ! R, at fixed time t � 0, as

T Ts
K

V (x
t

) :=

Z

t+Ts

t

xT

⌧

S
K

x
⌧

d⌧ + V (x
t+Ts), (4.15)

where x
⌧

= eAK(⌧�t)x
t

. This DP operator has the following property.

Lemma 4.1. If V (x
t

) is positive semi-definite, then so is its DP operation T Ts
K

V (x
t

) for

any policy u = �Kx and any T
s

> 0.

Proof. The proof is done by the fact that the integral in (4.15) is positive semi-definite

due to S
K

⌫ 0
n⇥n

; the second term V (x
t+Ts) is positive semi-definite by assumption.
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Next, the generalized DP operator (T Ts
K

)k is defined for k 2 Z
+

and T
s

2 R
+

as

8

>

>

<

>

>

:

(T Ts
K

)0V (x
t

) := V (x
t

),

(T Ts
K

)k+1V (x
t

) := (T Ts
K

)k[T Ts
K

V (x
t

)],

at fixed time t � 0. Here, k is referred to as the number of the DP operation T Ts
K

[·]
and will be matched with the iteration horizon k in I-GPI. Indeed, the value function

V
u

(x) = xTP
K

x for a Hurwitz policy u = �Kx can be expressed as the I-TD form:

V
u

(x
t

) =

Z

t+Ts

t

xT

⌧

S
K

x
⌧

d⌧ +

Z 1

t+Ts

xT

⌧

S
K

x
⌧

d⌧

| {z }

=Vu(xt+Ts )

= T Ts
K

V
u

(x
t

). (4.16)

In addition, the generalized DP operator has the following property:

Theorem 4.1. For the update horizon } = kT
s

, the DP operator T Ts
K

and its generalized

operator (T Ts
K

)k for a continuous functional V (x) satisfy

(T Ts
K

)kV (x
t

) = T }
K

V (x
t

). (4.17)

Moreover, if K is Hurwitz and V (0
n

) = 0, then lim}!1 T }
K

V (x
t

) = V
u

(x
t

).

Proof. Consider the sequence {W
i

(x
t

)}k
i=0

of continuous functionals which is defined by

W
0

(x
t

) := V (x
t

) and W
i

(x
t

) := T Ts
K

W
i�1

(x
t

) for i = 1, 2, 3, · · · , k. Then, obviously,

(T Ts
K

)kV (x
t

) = W
k

(x
t

) holds and thereby, one has

(T Ts
K

)kV (x
t

) =

Z

t+Ts

t

xT

⌧

Q
K

x
⌧

d⌧ + T Ts
K

⇥

(T Ts
K

)k�2 V (x
t+Ts)

| {z }

=Wk�2(xt+Ts )

⇤

=

Z

t+2Ts

t

xT

⌧

Q
K

x
⌧

d⌧ + T Ts
K

W
k�3

(x
t+2Ts)

...

=

Z

t+(k�1)Ts

t

xT

⌧

Q
K

x
⌧

d⌧ + T Ts
K

W
0

(x
t+(k�1)Ts

)

=

Z

t+kTs

t

xT

⌧

Q
K

x
⌧

d⌧ +W
0

(x
t+kTs)

= T kTs
K

V (x
t

),

which completes the proof of (4.17). Moreover, assume that K is Hurwitz and V (0
n

) = 0.
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Then, by continuity at 0
n

, we have lim}!1 V (x
t+}) = 0. Hence, by the definition (4.15)

of DP operator,

lim
}!1

T }
K

V (x
t

) =

Z 1

t

xT

⌧

Q
K

x
⌧

d⌧ = V
u

(x),

which completes the proof.

Using the DP operator, the one-step Bellman iteration (4.10) at time t � 0 can be

expressed as V
i|j+1

(x
t

) = T Ts
Ki

V
i|j(xt

). Furthermore, using the generalized DP operator and

applying Theorem 4.1, we can see that V
i+1

(x) = V
i|k(x) obtained in approximate policy

evaluation of I-GPI satisfies

V
i+1

(x
t

) = T }
Ki

V
i

(x
t

) (4.18)

for all x 2 Rn. Moreover, if u
i

= �K
i

x is Hurwitz, then V
i+1

! V
ui as } ! 1 by Theo-

rem 4.1. From these observations, we have the following corollary regarding the equivalence

classes of I-GPI including in the limit }!1.

Corollary 4.2. The I-GPI algorithms that have the same update horizon } yield the same

sequences {P
i

}1
i=0

and {K
i

}1
i=0

, so they can be considered the equivalents in the iteration

domain. Moreover, if K
0

is Hurwitz, then, in the limit } ! 1, I-GPI (Algorithm 4.3)

becomes the I-PI (Algorithm 4.2).

Corollary 4.2 states that under Hurwitz K
i

, the di↵erence |V
i+1

(x
t

)� V
ui(xt

)| can be

made arbitrarily small by increasing }. Here, the update horizon } can be enlarged by either

increasing k or T
s

. However, the larger k is, the higher is the computational complexity;

the larger T
s

is, the slower the learning speed in the time domain is. Hence, there exists a

trade-o↵ between the computational complexity and learning speed in approximate policy

evaluation, and one should carefully determine these parameters k, T
s

, and of course, }

(= kT
s

).

On the other hand, by the same procedure to (4.12)–(4.14) with T
s

replaced by the

update horizon }, one can also show that in the limit }! 0, the GPI algorithms become

the infinitesimal GPI (4.14). Therefore, considering in mind this and Corollary 4.2, all of

the I-GPI algorithms can be classified in terms of the update horizon } as shown in Fig.

58



Figure 4.1: The classifications of IRL algorithms in terms of k and }.

4.1, where infinitesimal GPI is at one extreme tip (}! 0), and I-PI is at the other extreme

tip of the spectrum (}!1); I-VI (k = 1) and I-GPI (fininte k) are posed on the middle

of the spectrum. From the classification with respect to } (or Corollary 4.2), one can see

the followings.

Remark 4.4. the I-GPI algorithms with the di↵erent k 2 N but the same update horizon

} = kT
s

are all equivalent so have the same convergence speed in the iteration domain

i 2 Z
+

if it converges; hence, the computational complexity due to the large iteration

horizon k can be lessened by increasing the time horizon T
s

for the same convergence

speed in the iteration domain.

Remark 4.5. I-GPI becomes I-PI as k or T
s

(or both) go to 1, which was not fully

investigated when I-GPIs were classified with respect to k 2 N as shown in Fig. 4.1; Only

in terms of k has the equivalence of I-GPI and I-PI shown in the literature [51]. On

the other hand, unlike I-GPIs, I-PI always generates the same sequences {P
Ki}1

i=0

and

{K
i

}1
i=0

regardless of the sample period T
s

, so all I-PI algorithms with di↵erent T
s

show

the same limiting behaviors when }!1.

To verify that all I-GPI algorithms with the same update horizon } yield the same

sequence {P
i

}1
i=0

(see Corollary 4.2 and Remark 4.1), we simulated I-GPI (Algorithm 4.3)
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Figure 4.2: Variations of P
i

for I-GPI with } = 0.3 [s].

with the following LQR problem for the load frequency control system:

A =

2

6

4

�5 0 �4
2 �2 0

0 0.1 �0.08

3

7

5

, B =

2

6

4

0

0

�0.1

3

7

5

, S = diag{20, 10, 5}, R = 0.15,

which is the same framework given by [112, Example 12.11], except that the governor

speed regulation was set to 1.25 per unit. In the simulations, the policy evaluation of I-

GPI is performed either by solving online least-squares problem at each iteration (see [93]

for this), or by just conducting the equivalent matrix iteration (4.30). In either case, the

policy evaluation yields the same value function matrix {P
i

}1
i=0

. In policy improvement,

the next policy K
i+1

is directely calculated by (4.11).

The simulation was performed with (P
0

,K
0

) = (0
3⇥3

,0
1⇥3

) for the same } = 0.3 [s]

and several di↵erent iteration horizons k = 3, 6, 12, · · · , and the results are shown in

Fig. 4.2, where the time axes were superposed and drawn only for the case of k = 3, 12.

Note that all the sampling period T
s

was set by the equation kT
s

= } = 0.3 [s], so the

simulation results have di↵erent scales in the time domain. Also note that the policy
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evaluation of these simulations were performed by the LS method [93], where 12 data

points were collected at each iteration to obtain the unique solution, and after every

policy improvement step, the exploratory signal is injected for T
s

seconds to excite the

state variables. So, as can be seen from Fig. 4.2, the iteration was done every 13T
s

[s]. The

simulation results are consistent to the theory: one can see from Fig. 4.2 that all the I-GPI

algorithms with the same } yield the same sequence {P
i

}1
i=0

, verifying in the iteration

domain the equivalence of all the I-GPI methods that have the same }.

4.5 Stability and Monotone Convergence Analysis

In the previous chapter, we see that the I-GPI (Algorithm 4.3) is the generalized one that

includes the fundamental IRLs—I-PI, I-VI, and infinitesimal GPI—as special and limiting

cases in the classification (see Fig. 4.1). Note that at the two extreme tips of the new

classification, the sequence of matrices {P
i

}1
i=0

monotonically converges to the optimal

solution P⇤ in the following way:

• (VI-Mode Convergence) for infinitesimal GPI (} = 0), 0
n⇥n

� P
t1 � P

t2 � P⇤

for 0  t
1

 t
2

under P
0

= 0
n⇥n

(see also Section 4.3);

• (PI-Mode Convergence) for I-PI (} = 1), 0
0

� P⇤ � P
Ki+1 � P

Ki for all

i 2 Z
+

under an initial Hurwitz policy.

Moreover, PI [113] (monotone decreasing) and value iteration (VI) [20, 25] (monotone in-

creasing) for DT dynamical systems also have this monotone convergence property (see

also [5]). In relation to the stability, this section shows these kinds of monotone conver-

gence in I-GPI (Algorithm 4.3) and its policy evaluation (4.10) on the line of the new

classification. As a first step, the two convergence modes above are precisely defined as

follows.

Definition 4.3. The sequence of matrices {P
i

2 Rn⇥n}1
i=0

converges to P⇤ 2 Rn⇥n in

PI-mode (resp. in VI-mode) if it is monotonically decreasing (resp. increasing) in a sense

that P⇤ � P
i+1

� P
i

(resp. P
i

� P
i+1

� P⇤) for all i 2 Z
+

.
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For notational convenience in the analysis, we let A
i

be the matrix of the i-th closed-

loop system of I-GPI, i.e., A
i

:= A �BK
i

as in the previous chapter; we also define the

P-dependent control gain matrix K
P

for a given matrix P 2 Rn⇥n as K
P

:= R�1BTP.

Here, the latter notation allows to write the matrix inequality R(P) = L(K,P)|
K=R

�1
B

T
P

in a simple form R(P) = L(K
P

,P). The following lemma stated with K
P

-notation will

be extensively used in the analysis.

Lemma 4.2. For any P, � 2 Rn⇥n and K 2Mm⇥n, the Lyapunov and Riccati operators

L(·, ·) and R(·) satisfy the followings:

• L(K,P)� L(K,�) = AT

K

(P��) + (P��)A
K

, (4.19)

• L(K,P) = R(P) + (K�K
P

)TR(K�K
P

). (4.20)

Proof. (4.19) can be easily verified by the definition of L(K,P) (see (4.4)):

L(K,P) = AT

K

P+PA
K

+ S
K

.

For the proof of (4.20), note that R(P) can be represented in terms of K
P

as

R(P) = ATP+PA�K
P

TRK
P

+ S,

and that (K�K
P

)TR(K�K
P

) = KTRK�KT

P

RK�KTRK
P

+KT

P

RK
P

. Then, the

proof is completed by substituting these into (4.20) and rearranging the equation.

In the convergence analysis of I-GPI, the next lemma will be used to finalize every

proof of monotone convergence of I-GPI. The lemma states that the convergent point

corresponds to the optimal solution (K⇤,P⇤).

Lemma 4.3. Consider the sequences {P
i

}1
i=0

and {K
i

}1
i=0

generated by the I-GPI for

LQR problems (Algorithm 4.3), and let {P
i

}1
i=0

be a convergent sequence. Then, P
i

and

K
i

converge to the optimal solutions P⇤ and K⇤, respectively.

Proof. See Appendix.

Together with Lemma 4.3, the next lemma is essentially needed for convergence analysis

of I-GPI. The lemma relates (K
i

,P
i

) with the optimal solution (K⇤,P⇤).
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Lemma 4.4. The matrix sequence {P
i

}1
i=0

generated by I-GPI (Algorithm 4.3) satisfies

P⇤ = P
i

+

Z 1

0

eA
T
K⇤⌧

⇥R(P
i

) + (K⇤ �K
i

)TR (K⇤ �K
i

)
⇤

eAK⇤⌧ d⌧. (4.21)

Proof. The substitutions of P = P
i

, � = P⇤, and K = K⇤ into (4.19) and (4.20) in

Lemma 4.2 yield

L(K⇤,P
i

) = AT

K

⇤(P
i

�P⇤) + (P
i

�P⇤)A
K

⇤ , (4.22)

L(K⇤,P
i

) = R(P
i

) + (K⇤ �K
Pi)

TR(K⇤ �K
Pi), (4.23)

where L(K⇤,P⇤) = R(P⇤) = 0 is used, and the existence of the unique solution (K⇤,P⇤)

is guaranteed by the stabilizability and detectability of the triple (S,A,B) [63]. Then,

substituting (4.23) into (4.22) yields the following generalized Lyapunov equation:

AT

K

⇤(P
i

�P⇤) + (P
i

�P⇤)A
K

⇤ = R(P
i

) + (K⇤ �K
Pi)

TR(K⇤ �K
Pi),

where the optimal policy K⇤ is Hurwitz. Therefore, the application of Lemma 2.2 to this

generalized Lyapunov equation completes the proof.

4.5.1 Monotone Convergence of Policy Evaluation Iterations

Corollary 4.2 states that P
i|k obtained by the policy evaluation iteration (4.10) at i-th

step of I-GPI converges to P⇤ if K
i

is Hurwitz. In this subsection, it will be shown that

the convergence is actually monotone under certain conditions; its proof is based on the

following lemma which shows the two equivalent matrix iterative formulas for the matrices

P
i|j generated by the i-th approximate policy evaluation of I-GPI.

Lemma 4.5. Any matrices P
i|l and P

i|l+

(0  l  l +  < 1) generated by i-th

approximate policy evaluation of I-GPI (Algorithm 4.3) satisfy

• P
i|l+

�P
i|l =

Z

�h

0

eA
T
i ⌧L(K

i

,P
i|l)e

Ai⌧ d⌧, (4.24)

• L(K
i

,P
i|l+

) = eA
T
i �hL(K

i

,P
i|l)e

Ai�h, (4.25)

where �h := T
s

and K
i

is a given policy at i-th iteration, not necessarily Hurwitz.

Proof. First, note that V
i|l+

(x
t

) = T �h

Ki
V
i|l(xt

) holds by (4.10) and Theorem 4.1. Then,
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the substitution of the expansion

T �h

Ki
V
i|l(xt

) =

Z

�h

0

xT

t+⌧

S
Kixt+⌧

d⌧ + xT

t+�h

P
i|l xt+�h

=xT

t



Z

�h

0

eA
T
i ⌧S

Kie
Ai⌧ d⌧ + eA

T
i �hP

i|l e
Ai�h

�

x
t

,

and V
i|l+

(x
t

) = xT

t

P
i|l+

x
t

into V
i|l+

(x
t

) = T �h

Ki
V
i|l(xt

) yields

P
i|l+

= eA
T
i �hP

i|le
Ai�h +

Z

�h

0

eA
T
i ⌧S

Kie
Ai⌧ d⌧.

Then, adding and subtracting P
i|l on the right hand side and applying Lemma 2.1 proves

(4.24). For the proof of (4.25), note that (4.19) in Lemma 4.2 implies

L(K
i

,P
i|l+

) = L(K
i

,P
i|l) +AT

i

(P
i|l+

�P
i|l) + (P

i|l+

�P
i|l)Ai

,

where the second term of the right hand side satisfies

AT

i

(P
i|l+

�P
i|l) + (P

i|l+

�P
i|l)Ai

= eA
T
i �hL(K

i

,P
i|l)e

Ai�h � L(K
i

,P
i|l),

which is obtained by the substitution of (4.24) and the application of Lemma 2.1. Hence,

one obtains (4.25), and the proof is completed.

Based on Lemma 4.5, the monotone convergence theorem is provided as follows.

Theorem 4.2. Consider the finite matrix sequence {P
i|j}k

j=0

generated by the i-th approx-

imate policy evaluation of Algorithm 4.3. Suppose that K
i

is Hurwitz so that P
i|k ! P

Ki

as }!1. Then, for any } 2 R
+

and j 2 {1, 2, · · · , k},
• L(K

i

,P
i|0) � 0

n⇥n

implies L(K
i

,P
i|j) � 0

n⇥n

and

P
Ki � P

i|k � · · · � P
i|j � · · · � P

i|0; (4.26)

• L(K
i

,P
i|0) ⌫ 0

n⇥n

implies L(K
i

,P
i|j) ⌫ 0

n⇥n

and

P
i|0 � · · · � P

i|j � · · · � P
i|k � P

Ki . (4.27)

Proof. For the proof of the first part, suppose L(K
i

,P
i|0) � 0

n⇥n

. Then, it satisfies

eA
T
i tL(K

i

,P
i|0)e

Ait � 0
n⇥n

8t � 0.
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Hence, P
i|1�Pi|0 ⌫ 0

n⇥n

and L(K
i

,P
i|1) � 0

n⇥n

holds by (4.24) and (4.25) in Lemma 4.5

(l = 0,  = 1), respectively. From L(K
i

,P
i|1) � 0

n⇥n

, one also obtains P
i|2�P

i|1 ⌫ 0
n⇥n

and L(K
i

,P
i|2) � 0

n⇥n

in the same manner, but with l = 1 and  = 1 in Lemma 4.5.

Continuing this procedure up to l = k� 1, all with  = 1, yields (4.26), where the matrix

inequality P
Ki � P

i|k is obtained from L(K
i

,P
i|k) � 0

n⇥n

and (4.24) in Lemma 4.5

(l = k and  ! 1); in this limit, P
l+

converges to P
Ki since K

i

is assumed Hurwitz.

This completes the proof of (4.26); the monotonicity (4.27) can be also proven by assuming

L(K
i

,P
i|0) ⌫ 0

n⇥n

and following the same procedure.

4.5.2 Closed-Loop Stability and PI-Mode Convergence

Based on the results in Section 4.5.1, this section provides the closed-loop stability and

PI-mode convergence results of I-GPI. For notational convenience, define the increments

�P
i

and �K
i

as �P
i

:= P
i+1

�P
i

and �K
i

:= K
i+1

�K
i

, respectively. Also, let M
(i,})

be defined by

M
(i, }) :=

Z }

0

eA
T
i ⌧L(K

i

,P
i

)eAi⌧ d⌧. (4.28)

Then, from (4.24) and (4.25) in Lemma 4.5 with l = 0 and  = k, we obtain the following

two equivalent matrix formulas

�P
i

= M
(i,}), (4.29)

L(K
i

,P
i+1

) = eA
T
i }L(K

i

,P
i

)eAi}, (4.30)

where L(K
i

,P
i

) for i � 1 in (4.30) satisfies R(P
i

) = L(K
i

,P
i

) due to the policy im-

provement “K
i

= R�1BTP
i

” of I-GPI. In addition, (4.20) in Lemma 4.2 implies that the

operators R(P
i+1

) and L(K
i

,P
i+1

) satisfy

R(P
i+1

) = L(K
i

,P
i+1

)��KT

i

R�K
i

. (4.31)

This explains how the policy improvement step K
i+1

= R�1BTP
i+1

influences the Riccati

error R(P
i+1

) through �KT

i

R�K
i

, wherein L(K
i

,P
i+1

) results from the approximate
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policy evaluation of I-GPI and satisfies (4.30).

In what follows, the general matrix inequality condition is given to guarantee the

closed-loop stability of the next policy when the current policy is Hurwitz. This stability

criterion will be a necessary condition for PI-mode convergence of I-GPI.

Theorem 4.3. Assume K
i

is Hurwitz and P
i+1

2 Rn⇥n is positive semi-definite. If K
i+1

updated by K
i+1

= R�1BTP
i+1

satisfies L(K
i

,P
i+1

) � S
Ki+1, then K

i+1

is also Hurwitz.

Proof. See Appendix.

From Theorem 4.3 and mathematical induction, we obtain the following corollary re-

garding stability propagation of I-GPI.

Corollary 4.3. Suppose that K
0

is Hurwitz and P
0

⌫ 0
n⇥n

. If the pair (K
i+1

,P
i+1

) and

K
i

satisfy

L(K
i

,P
i+1

) � S
Ki+1 8i 2 Z

+

, (4.32)

then the policies {K
i

}1
i=1

generated by I-GPI (Algorithm 4.3) are all Hurwitz.

Proof. Assume P
i

⌫ 0
n⇥n

, and K
i

is Hurwitz and satisfies L(K
i

,P
i+1

) � S
Ki+1 . Then,

Lemma 4.1 implies P
i+1

⌫ 0
n⇥n

, and the application of Theorem 4.3 results in the Hurwitz

policy K
i+1

. Hence, mathematical induction concludes that {K
i

}1
i=1

are all Hurwitz.

The condition L(K
i

,P
i+1

)  S
Ki+1 in Corollary 4.3 provides stability during and after

the learning phase, but the direct evaluation of L(K
i

,P
i+1

) requires the knowledge of the

system matrix A at each iteration, while I-GPI does not. The next corollary provides

another inequality condition for the closed-loop stability, which does not explicitly depend

on L(K
i

,P
i+1

), so prevent I-GPI to require the knowledge of A.

Corollary 4.4. Suppose that the initial policy K
0

is Hurwitz and P
0

⌫ 0
n⇥n

satisfies

L(K
0

,P
0

) � S
K0. Then, the policies {K

i

}1
i=1

generated by I-GPI are all Hurwitz if K
i

and K
i+1

satisfy

eA
T
i }S

Kie
Ai} � S

Ki+1 , 8i 2 Z
+

. (4.33)
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Proof. Assume that K
i

is Hurwitz and P
i

⌫ 0
n⇥n

satisfies L(K
i

,P
i

) � S
Ki . Then, (4.30)

and (4.33) implies

L(K
i

,P
i+1

) = eA
T
i }L(K

i

,P
i

)eAi} � eA
T
i }S

Kie
Ai} � S

Ki+1 . (4.34)

So, since P
i+1

⌫ 0
n⇥n

holds by Lemma 4.1, K
i+1

is also Hurwitz by Theorem 4.3. Sub-

stituting the inequality (4.34) into (4.31) and rearranging it yields

L(K
i+1

,P
i+1

) = R(P
i+1

) � S
Ki+1 ��KT

i

R�K
i

� S
Ki+1 .

Therefore, mathematical induction with L(K
0

,P
0

)  S
K0 proves that the policies {Ki

}1
i=1

are all Hurwitz, which completes the proof.

Although condition (4.33) depends on the system matrix A, it is contained only in the

form of exponentials. By virtue of this fact, (4.33) can be easily checked without knowing

the system matrix A (see [93]).

Now, the following theorem states that, under certain conditions satisfying (4.32), the

policies {K
i

}1
i=0

generated by I-GPI are all Hurwitz, and P
i

! P⇤ in PI-mode.

Theorem 4.4. Suppose that an initial Hurwitz policy K
0

and P
0

⌫ 0
n⇥n

satisfy

L(K
0

,P
0

) � 0
n

.

Then, the following hold for all i 2 Z
+

.

• (Stability) The policy K
i

is Hurwitz and satisfies the Lyapunov inequalities

L(K
i

,P
i+1

) � 0
n⇥n

and L(K
i+1

,P
i+1

) � ��KT

i

R�K
i

.

That is,
8

<

:

AT

i

P
i+1

+P
i+1

A
i

� �S
Ki

AT

i+1

P
i+1

+P
i+1

A
i+1

� �S
Ki+1 ��KT

i

R�K
i

.
(4.35)

• (PI-mode convergence) The sequence {(P
i

,K
i

}1
i=0

generated by I-GPI converge
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to the optimal solution (P⇤,K⇤) with the following monotonicities :

8

<

:

0
n⇥n

� P
Ki � P

i+1

� P
i

0
n⇥n

� P⇤ � · · · � P
i+1

� P
i

� · · · � P
0

.
(4.36)

• (2nd-order monotone decreasing) There exists c > 0 such that if (K
i+1

,P
i+1

)

and K
i

for some i 2 Z
+

satisfy

�(↵
i

� 1)�KT

i

R�K
i

� L(K
i

,P
i+1

) � 0
n⇥n

, (4.37)

where ↵
i

� 1 is a constant, then for all such i, kP
i+1

�P⇤k  c · ↵
i

kP
i

�P⇤k2 .

Proof. First, P
0

⌫ 0
n⇥n

and Lemma 4.1 imply that P
i

⌫ 0
n⇥n

for all i 2 Z
+

by

mathematical induction. Next, assume L(K
i

,P
i

) � 0 for some i 2 Z
+

. Then, we have

L(K
i

,P
i+1

) � 0 by (4.30) and substituting this into (4.31) yields

R(P
i+1

) = L(K
i

,P
i+1

)��KT

i

R�K
i

� ��KT

i

R�K
i

.

Hence, mathematical induction with (K
0

,P
0

) satisfying L(K
0

,P
0

) � 0
n⇥n

implies that

the Lyapunov inequalities L(K
i

,P
i+1

) � 0
n⇥n

and

L(K
i+1

,P
i+1

) = R(P
i+1

) � ��KT

i

R�K
i

� 0
n⇥n

hold for all i 2 Z
+

.

(Proof of stability). L(K
i

,P
i+1

) � 0
n⇥n

implies L(K
i

,P
i+1

) � S
Ki+1 , and by Corol-

lary 4.3, one can conclude that for all i 2 Z
+

, K
i

is Hurwitz.

(Proof of monotone convergence). P
i+1

= P
i|k and (4.26) in Theorem 4.2 imply that P

i+1

satisfies 0
n⇥n

� P
Ki � P

i+1

� P
i

, which holds for all i 2 Z
+

since L(K
i

,P
i

) � 0
n⇥n

for all i 2 Z
+

. Therefore, since it is monotonically decreasing and bounded by 0
n⇥n

,

the sequence {P
i

}1
i=0

monotonically converges. Let P̄ be the limit point of P
i

, i.e., P̄ :=

lim
i!1P

i

. Then, P̄ satisfies 0
n⇥n

� P̄ � P
i+1

� P
i

for all i 2 Z
+

, and Lemma 4.3

implies P̄ = P⇤ and lim
i!1K

i

= K⇤, respectively. This proves the convergence P
i

! P⇤

in PI-mode (with the monotonicity (4.36)).

(Proof of 2nd-order convergence). First, note that one has 0
n⇥n

� P
i+1

� P⇤ by (4.36),

and (4.31) and (4.37) imply

�↵
i

�KT

i

R�K
i

� R(P
i+1

) � ��KT

i

R�K
i

.
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From this inequality and (4.21), one obtains

0
n⇥n

� P
i+1

�P⇤ � �
Z 1

0

eA
T
K⇤⌧R(P

i+1

)eAK⇤⌧ d⌧

� ↵
i

Z 1

0

eA
T
K⇤⌧�KT

i

R�K
i

eAK⇤⌧ d⌧. (4.38)

By virtue of the fact that for X, Y 2 Rn⇥n, “0
n⇥n

� X � Y =) kXk  kYk”, one
can take the matrix norm k · k on (4.38) and obtain the following inequality using the

properties of the norm:

kP
i+1

�P⇤k  ↵
i

Z 1

0

�

�

�

eA
T
K⇤⌧�KT

i

R�K
i

eAK⇤⌧
�

�

�

d⌧

 ↵
i

✓

Z 1

0

keAK⇤⌧k2 d⌧
◆

kBR�1BT k
| {z }

=:c

·kP
i

�P
i+1

k2

Now, the proof of the 2nd-order monotone decreasing kP
i+1

�P⇤k  c ·↵
i

kP
i

�P⇤k2 can

be done by using the fact that by (4.36), 0
n⇥n

� P
i

�P
i+1

� P
i

�P⇤ holds for all i 2 Z
+

,

which again implies kP
i

�P
i+1

k  kP
i

�P
K

⇤k.

The properties of I-GPI in PI-mode convergence shown in Theorem 4.4 are similar to

those of I-PI which is equivalent to Kleinman’s Newton method [110] (see (4.6)). Actually,

the I-GPI algorithm can be considered an inexact Kleinman’s Newton algorithm [114]

with the residual “L(K
i

,P
i+1

)”, which can be made arbitrarily small by increasing } in

the approximate policy evaluation. Actually, the I-GPI can be represented by the quasi-

Newton form:

P
i+1

= P
i

+
�L0

Ki,Pi

��1

h

L(K
i

,P
i

)� L(K
i

,P
i+1

)
i

,

which converges to the Newton method (4.6) as the residual L(K
i

,P
i+1

) goes to zero

(} ! 1). In this limit case, I-GPI becomes I-PI as mentioned in Section 4.5.1, and

the Lyapunov inequalities in (4.35) of Theorem 4.4 become their respective Lyapunov
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equations of the form

8

>

<

>

:

AT

i

P
i+1

+P
i+1

A
i

= �S
Ki

AT

i+1

P
i+1

+P
i+1

A
i+1

= �S
Ki+1 ��KT

i

R�K
i

,

which provide the closed-loop stability at each i-th iteration and implies that

1) the residual L(K
i

,P
i+1

) become zero;

2) R(P
i+1

) satisfies R(P
i+1

) = ��K
i

R�K
i

for all i 2 Z
+

.

Here, the former guarantees the condition (4.37) with ↵
i

= 1, which implies the uniform

2nd-order PI-mode convergence, and the latter implies R(P
i

) � 0
n⇥n

, which provides

an alternative approach to the proof of monotone convergence of I-PI, as shown in this

dissertation.

Regarding the closed-loop stability of I-GPI, under an initial Hurwitz policy K
0

, three

matrix inequality conditions have been presented in this subsection and are summarized

in Fig. 4.3 and in the following:

1) L(K
i

,P
i+1

) � S
Ki+1 in Corollary 4.3: this condition is the most general stability

condition among the three, and hence can be considered the su�cient condition of

the other two;

2) L(K
0

,P
0

) � S
K0 and (4.33) in Corollary 4.4: this condition is rather restricted, but

can be checked in online learning without using the knowledge of the matrix A (see

[93]).

3) L(K
0

,P
0

) � 0
n⇥n

for PI-mode convergence: as shown in Theorem 4.4, this initial

matrix condition ensures L(K
i

,P
i+1

) � 0
n⇥n

for all i 2 Z
+

, which again implies

L(K
i

,P
i+1

) � S
Ki+1 8i 2 Z

+

. Therefore, the closed-loop stability in the entire

iteration is automatically guaranteed so one does not need to check any matrix

inequalities for stability except the initial one. For the first two conditions, the agent

should check the inequality at every iteration step to maintain the stability.

4.5.3 Monotone Increasing and VI-Mode Convergence

This section discusses the monotone increasing and VI-mode convergence properties of

I-GPI. These properties in VI-mode are the counterpart of PI-mode convergence and do
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Figure 4.3: Summary of stability conditions and PI-mode convergence of I-GPI.

not require the initial policy K
0

Hurwitz like the infinitesimal GPI and the VI in DT

domain. In the discussions, the following analytical result plays a central role.

Theorem 4.5. Consider the sequence of (P
i

,K
i

) generated by I-GPI under

0
n⇥n

� P
0

� P⇤.

If K
i

and P
i

satisfy L(K
i

,P
i

) ⌫ 0
n⇥n

, 8i 2 {0, 1, 2, · · · , l � 1}, then the finite sequence

{P
i

}l
i=0

possesses the monotone increasing property:

0
n⇥n

� P
0

� · · · � P
i

� P
i+1

� · · · � P
l

� P⇤. (4.39)

Moreover, if L(K
i

,P
i

) � 0
n⇥n

8i 2 Z
+

, then (P
i

,K
i

) converge to (P⇤,K⇤) with the

monotonicity (4.39) for all i 2 Z
+

.

Proof. For each i 2 {0, 1, 2, · · · , l�1}, L(K
i

,P
i

) � 0
n⇥n

and (4.27) in Theorem 4.2 implies

0
n⇥n

� P
i

� P
i+1

(positive semi-definiteness comes from Lemma 4.1). Next, we obtain

P⇤ ⌫ P
i

8i 2 {1, 2, · · · , l�1} from (4.21) since R(P
i

) = L(K
i

,P
i

) ⌫ 0 by assumption and

(�K⇤
i

)TR�K⇤
i

⌫ 0
n⇥n

(P⇤ ⌫ P
0

is assumed for i = 0). Rearranging all these inequalities

yields 0
n⇥n

� P
i

� P
i+1

� P⇤, which holds for all i 2 {0, 1, 2, · · · , l�1} by the assumption

L(K
i

,P
i

) ⌫ 0
n⇥n

for all such i. Therefore, we have (4.39), and the monotone convergence

to the optimal solution can be directly proven by the assumption of L(K
i

,P
i

) ⌫ 0
n⇥n

for

all i 2 Z
+

and Lemma 4.3.

This theorem with 0
n⇥n

� P
0

� P⇤ and L(K
0

,P
0

) ⌫ 0
n⇥n

obviously guarantees
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the monotone increasing (4.39) up to some finite l 2 N (the trivial case is l = 1). For

I-GPI methods with P
0

= 0
n⇥n

, this monotone increasing is also valid for any given

initial policy K
0

not necessarily Hurwitz since L(K
0

,P
0

) = KT

0

RK
0

+ S ⌫ 0
n⇥n

holds.

On the other hand, for VI-mode convergence, I-GPI should generate the sequences {P
i

}
and {K

i

} (= R�1BTP
i

), both of which satisfy L(K
i

,P
i

) ⌫ 0
n⇥n

for all i 2 N. However,

this is not attainable in general since, even in the case where K
i

is Hurwitz that satisfies

L(K
i

,P
i

) ⌫ 0 under 0 � P
i

� P⇤, R(P
i+1

) can be indefinite or negative semi-definite

for large } by (4.31). This is because the residual L(K
i

,P
i+1

) in (4.31) becomes zero as

}!1 (see (4.30) and also Theorem 4.2). More obviously and intuitively, since P⇤ is the

optimal solution, any P
Ki for a Hurwitz K

i

satisfies 0 � P⇤ � P
Ki , which in turn implies

that P
i

would not satisfy 0
n⇥n

� P
i

� P⇤ especially when } is large (an example of this

case is P⇤ � P
i

� P
Ki). Therefore, VI-mode convergence is not attainable in general.

In contrast, I-GPI methods with a su�ciently small } > 0 can generate the sequence

{P
i

}, which satisfies L(K
i

,P
i

) ⌫ 0
n⇥n

for all i 2 N and hence, converges in VI-mode

according to Theorem 4.5. In this case, (P
0

,K
0

) is required to satisfy L(K
0

,P
0

) � 0,

instead of L(K
0

,P
0

) ⌫ 0. To see this, assume L(K
i

,P
i

) � 0. Then, L(K
i

,P
i+1

) is also

positive definite by (4.30) or Theorem 4.2, which again implies there is "
i

> 0 such that

"
i

I
n

� L(K
i

,P
i+1

). So, if �K
i

satisfies

�KT

i

R�K
i

� "
i

I
n

, (4.40)

then P
i+1

satisfies R(P
i+1

) � 0 by (4.31); the induction implies R(P
i

) � 0 for all i 2 N,

and the VI-mode convergence is guaranteed by Theorem 4.5. Here, since
�

��KT

i

R�K
i

�

�

can be made arbitrarily small by decreasing } > 0 (notice �K
i

= R�1BTM
(i,}) by (4.29)

and M
(i,}) ! 0 as }! 0), the I-GPI with a su�ciently small } > 0 yields �K

i

satisfying

(4.40) and thereby, can generate the convergent sequence {P
i

} in VI-mode by Theorem 4.5.

This VI-mode convergence can be also possible for infinitesimal GPI and I-VI with

su�ciently small T
s

> 0 since they belong to the special class of I-GPI with “0 < }⌧ 1” in
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Figure 4.4: PI- and VI-mode convergence of I-GPI.

the new classification (see Fig. 4.1). Actually, the VI-mode convergence of the infinitesimal

I-GPI Ṗ
t

= R(P
t

) (0  t < 1) under the zero initial condition P
0

= 0
n⇥n

, discussed

in Section 4.3, is the special case of that under 0
n⇥n

� P
0

� P⇤ and R(P
0

) ⌫ 0
n⇥n

.

Therefore, Theorem 4.5 also shows the monotone increasing and VI monotone convergence

conditions of infinitesimal GPI in the general case “0
n⇥n

� P
0

� P⇤ and R(P
0

) ⌫ 0
n⇥n

”

that contains the infinitesimal GPI with P
0

= 0
n⇥n

as a special case.

4.5.4 Convergence in PI-Mode versus VI-Mode

PI- and VI-mode convergence of I-GPI can be illustrated in Fig. 4.4 and, in reference to

that, can be summarized as follows.

• In PI-mode, P
i

remains in the region {0
n⇥n

� P⇤ � P} for all i 2 Z
+

and converges

like PI methods, e.g., I-PI for CT LQR (I-GPI in the limit }!1).

• In VI-mode, P
i

is in the other region {0
n⇥n

� P � P⇤} for all i 2 Z
+

, and converges

like “infinitesimal GPI” and “VI in DT domain”.
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Note that PI- and VI-mode convergence of I-GPI can be considered the generalizations

of monotone convergence at } = 0 (infinitesimal GPI) and } = 1 (I-PI) of the spectrum

in the new classification. The convergence properties of I-VI (k = 1) and I-GPI (fininte k)

posed on the middle of the spectrum are determined depending on the update horizon }

and the matrix inequality conditions in this section. Since I-GPI with the same } are all

equal in iteration domain as shown in the previous chapter, they have the same PI-mode

or VI-mode convergence property if one of them has.

Remark 4.6. While the choice of } > 0 does not a↵ect PI-mode convergence (Theo-

rem 4.4), VI-mode convergence can be achieved only with su�ciently small } > 0 (or

in the limit } ! 0) as discussed in Section 4.5.3; otherwise, L(K
i

,P
i

) ⌫ 0
n⇥n

is not

guaranteed after some finite step i = l and in this case, Theorem 4.5 only implies I-GPI

generates P
i

that is monotonically increasing up to l. On the other hand, PI-mode con-

vergence is possible even in the limit }! 0 and }!1 as long as the Hurwitz policy K
0

and P
0

⌫ 0
n⇥n

satisfy L(K
0

,P
0

) � 0
n⇥n

.

4.5.5 Numerical Simulations

To verify and further discuss the stability and convergence properties of the I-GPI, we

simulated I-GPI (Algorithm 4.3) with the LQR problem considered in Section 4.4. In the

simulations, the policy evaluation of I-GPI is performed either by solving online least-

squares problem at each iteration (see [93] for this), or by just conducting the equivalent

matrix iteration (4.30). In either case, the policy evaluation yields the same value function

matrix {P
i

}1
i=0

. In policy improvement, the next policyK
i+1

is directly obtained by (4.11).

Simulation Example 1: PI-Mode Convergence

In this example, the initial conditions P
0

and K
0

were set to P
0

= diag{10, 10, 20} and

K
0

=
⇥

0, 0, �14 ⇤, respectively, so that the initial pair (P
0

,K
0

) satisfies L(K
0

,P
0

) �
0
n⇥n

. Figs. 4.5 and 4.6 show the simulation results for k = 5 and T
s

= 20 [ms]. In this

case, as stated in Theorem 4.4 and can be seen from the figures, all the closed-loop systems

are stable and P
i

monotonically converges to P⇤ in PI-mode. Fig. 4.5 illustrates the state
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Figure 4.5: (Example 1: PI-mode convergence) Variations of state variable x
⌧

.

trajectories for the online LS implementation case [93], where the marked points indicate

the time instant the policy was changed by the I-GPI agent. Here, the states rapidly vary

right after the marked points due to the exploratory signal applied after every policy

improvement. From this figure, one can see that the states remain in a small bounded

region by the stability argument. In addition, Fig. 4.6(a) shows the convergence of P
i

to P⇤, where the diagonals (P
11

and P
33

) are monotonically decreasing. This PI-mode

convergence becomes obvious by Fig. 4.6(b), which shows the eigenvalues of the di↵erence

P
i

� P
i�1

are always negative, implying 0
n⇥n

� P
i

� P
i�1

� · · · � P
0

. Therefore,

Fig. 4.6(a) and (b) exactly show PI-mode convergence stated in Theorem 4.4.
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Figure 4.6: (Example 1: PI-mode convergence) Variations of (a) P
i

, and (b) eigen-
values of the di↵erence P

i

� P
i�1

for the I-GPI with k = 5 and T
s

= 20 [ms]; the initial
conditions are given by P

0

= diag{10, 10, 20} and u
0

= 14x
3

.
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Simulation Example 2: VI-Mode Convergence

To further investigate the VI-mode convergence, an additional simulation was performed

with (P
0

,K
0

) = (0
3⇥3

,0
1⇥3

) and } = 0.3, 1.2 [s]. Then, both results for } = 0.3 [s] and

} = 1.2 [s] were compared as shown in Fig. 4.7 and Table 4.1. In both simulations, T
s

was

set to T
s

= 0.1 [s].

Fig. 4.7 shows the variations of eigenvalues of L(K
i

,P
i

). In Fig. 4.7(a), it is shown

that all the eigenvalues of L(K
i

,P
i

) remain positive for } = 0.3 [s], implying VI-mode

convergence by Theorem 4.5. Here, the convergence to P⇤ is verified by Fig. 4.2 and the

monotonicity can be seen from Table 4.1, where the minimum eigenvalues of P
i

�P
i�1

for

} = 0.3 [s] are all positive. This implies (4.39) with l !1 in Theorem 4.5. On the other

hand, in the case of } = 1.2 [s], only the minimum eigenvalue of P
1

�P
0

(i = 1) is positive

due to the initial condition L(K
0

,P
0

) ⌫ 0
n⇥n

, but the others are not due to the violations

of L(K
i

,P
i

) ⌫ 0
n⇥n

for i � 1, as shown in Fig. 4.7(b) and Table 4.1 for } = 1.2 [s].

Therefore, while P
i

for } = 1.2 [s] is actually shown to converge to P⇤ (* L(K
i

,P
i

) ! 0

by Fig. 4.7(b)), unlike the case with the small } = 0.3 [s], the convergence is not monotone

for this relatively large update horizon } = 1.2 [s].

Table 4.1: (Example 2: VI-mode convergence) Variations of the minimum eigenvalue
of P

i

�P
i�1

for } = 0.3 [s] and } = 1.2 [s].

i } = 0.3 [s] } = 1.2 [s] i } = 0.3 [s] } = 1.2 [s]

1 1.16e-00 1.59e-00 6 6.94e-08 -7.59e-06

2 3.53e-02 -2.30e-00 7 3.36e-09 -8.98e-08

3 1.07e-03 -2.76e-01 8 1.66e-10 -4.80e-10

4 3.72e-05 -1.38e-02 9 8.29e-12 -2.53e-11

5 1.52e-06 -3.97e-04 10 4.74e-13 -2.22e-12

77



0

5

10

15

20

A
m
pl
it
ud

e

Variations of Eigenvalues of (kTs = 0.3 [s])

 

 

Iteration

1 2 3 4 5 6 7 8 9 100

( Pi)L Ki,

�1(

�2

�3

)( Pi)L Ki,

( )( Pi)L Ki,

( )( Pi)L Ki,

(a) Variations of L(Ki,Pi) for } = 0.3

−5

0

5

10

15

20

A
m
pl
it
ud

e

Variations of Eigenvalues of (kTs = 1.2 [s])

 

 

�1(

�2

�3

1 2 3 4 5 6 7 8 9 10

Iteration

0

)

( Pi)L Ki,

( Pi)L Ki,

( )( Pi)L Ki,

( )( Pi)L Ki,

(b) Variations of L(Ki,Pi) for } = 1.2
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4.6 Summary

In this chapter, a family of partially model-free fundamental IRL algorithms including

I-PI, I-VI, infinitesimal GPI, and their generalization “I-GPI” were presented in CT LQR

framework and then classified in a new way in terms of the iteration horizon, the product

of the iteration horizon involved in computational complexity and the time horizon deter-

mining the sampling period in time. In this new classification, the I-GPIs with the same

update horizon are all equivalence classes in the iteration domain, implying the existence

of the trade-o↵ between the complexity and the sampling period. Then, the closed-loop

stability and monotone convergence of I-GPI were investigated in relation to the update

horizon. The main focus here were the two modes of convergence called VI- and PI-modes

in convergence. These two convergence modes came from I-PI and infinitesimal GPI at the

two extreme tips of the new classification and characterize the convergence behaviors of

the fundamental IRLs. Here, it has been shown that PI-mode convergence guarantees the

closed-loop stability and that VI-mode convergence is achieved only with the su�ciently

small update horizon. Numerical simulations were conducted to support the theoretical

foundations.
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Chapter 5

Integral Reinforcement Learning with

Invariant Explorations

This chapter introduces the IRL algorithms that e�ciently and explicitly use the probing

signal, injected to the target nonlinear dynamics through the control input channel, to

solve the following optimal control problem:

minimize J(x
t

,u(·)) =
Z 1

t

r(x
⌧

,u
⌧

) d⌧

subject to

8

>

>

<

>

>

:

ẋ
⌧

= f(x
⌧

) +G(x
⌧

)u(x
⌧

), x(t) = z 2 D ✓ Rn

S = {0
n

} and S(x) � 0 on D

(5.1)

in online fashion, where f(x) 2 Rn with f(0
n

) = 0
n

and G(x) 2 Rn⇥m are nonlinear

functions in C0

L

(D); D ✓ Rn is the open connected domain of f and G that contains

0
n

in its interior; r(x,u) := S(x) + uTR(x)u � 0 is the cost defined for a positive

definite function S : D ! R
+

and a matrix-valued uniformly bounded smooth function

R : D ! Rm⇥m that is positive definite, uniformly for all x 2 D. Here, the optimal control

problem (5.1) is exatly same to the nonlinear optimal control problem (3.1) and (3.4) under

Assumption 3.4 considered in Sections 3.3 and 3.4. The two IRL algorithms introduced

in this chapter are the explorized variants of the ideal I-PI (Algorithm 5.1) introduced

in the next section and derived from the ideal PI (Algorithm 3.1) in Section 3.1; the

ultimate goal of the two IRL methods in this chapter is to find the solution (V ⇤,u⇤) of

the nonlinear optimal control problem (5.1) in online fashion when the nonlinear system

(3.1) is explored by a known time-varying probing signal e
⌧

so behaves according to the
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following e
⌧

-dependent nonlinear dynamics:

ẋ
⌧

= f(x
⌧

) +G(x
⌧

)[u(x
⌧

) + e
⌧

], x(t) = z 2 D, (5.2)

where e : [t,1) ! Rm is the probing signal, called an exploration. In this dissertation,

the term ‘exploration’ is precisely defined as follows.

Definition 5.1. A time function e : [t,1)! Rm is called an exploration if it is piecewise

continuous and uniformly bounded for all t � 0.

In this chapter, the state trajectory x
⌧

at time ⌧ � t, will be denoted by x
⌧

(z;u, e) to

indicate that it is generated by the explorized nonlinear system (5.2) under the given policy

u(x) and exploration e
⌧

. Obviously, x
⌧

(z;u) ⌘ x
⌧

(z;u,0
m

) holds, which corresponds to

the state trajectory x
⌧

under the zero exploration e
⌧

⌘ 0
m

.

In the IRL algorithms in this chapter, the use of the exploration e makes it possible

to e�ciently explore the state space in online fashion and more importantly, to relax the

requirements of the knowledge of the input-coupling term G(x) that makes the IRL algo-

rithms model-free. These improvements actually came from the ideal PI (Algorithm 5.1)

combined with the concepts of explorations and temporal di↵erence (TD) of RL in a finite

MDP [1]. To develop such online IRL methods, however, these RL concepts have to be

extended in the sense of admissiblility-guarantee and TD error compensations.

Together with the I-PI for the nonlinear system, we describe and organize these ex-

tended RL concepts named as “invariant explorations” and “advanced I-TD”. Then, the

target IRL algorithms will be derived using these extended RL concepts and nonlinear

I-PI.

5.1 Nonlinear Integral Policy Iteration on ROAs

I-PI is a fundamental IRL algorithm to obtain the optimal solution (u⇤, V ⇤) satisfying

(3.23) and (3.5), without explicit use of the knowledge of the system drift dynamics f(x).

Since I-PI can be applied to the nonlinear system (3.1) with completely unknown f(x),
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it is classified as a class of partially model-free IRL methods. The main idea of I-PI is to

integrate the Hamiltonian equation (3.28) in PI from t to t + T
s

for some T
s

> 0, which

results in the following I-TD equation:

V
u

(x
t

) =

Z

t+Ts

t

r(x
⌧

,u(x
⌧

)) d⌧ + V
u

(x
t+Ts), 8xt

2 R
A

(u), (5.3)

for an admissible policy u, where x
⌧

⌘ x
⌧

(z;u,0
m

) (⌧ 2 [t, t+ T
s

]) for z = x(t).

The ideal I-PI is described in Algorithm 5.1, whose di↵erence from the ideal PI (Al-

gorithm 3.1) lies only in policy evaluation (line 3). While the value function in the ideal

PI is obtained by solving the Hamiltonian equation (5.4), which requires the knowledge of

f(x) and G(x), the ideal I-PI (Algorithm 5.1) finds the value function by solving the I-TD

equation (5.4), where f(x) and G(x) are not explicitly shown, so they are not required

to be known to execute policy evaluation of I-PI. On the other hand, G(x) should be

Algorithm 5.1: Ideal Integral Policy Iteration

Input: an initial admissible policy u
0

: D ! Rm.

Output: the optimal solution (u⇤,V⇤) satisfying (3.23) and (3.5).

1 i 0;

2 repeat

3 Policy Evaluation: find the value function V
ui : RA

(u
i

)! R that belongs to

C1

L

+(ui

) and satisfies

V
ui(xt

) =

Z

t+Ts

t

r(x
⌧

,u
i

(x
⌧

)) d⌧ + V
ui(xt+Ts), 8z 2 R

A

(u
i

), (5.4)

where x
⌧

⌘ x(z;u
i

) for z = x(t) and an (admissible) policy u
i

;

4 Policy Improvement: update the next policy u
i+1

: D ! Rn which is locally

Lipschitz continuous and whose restriction on R
A

(u
i

) satisfies

u
i+1

(x) = �1

2
R�1(x)GT (x)rV

ui(x) 8x 2 R
A

(u
i

); (5.5)

5 i i+ 1;

until6 convergence is met.
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known to execute policy improvement of I-PI (see (3.29)); this restriction will be relaxed

in Section 5.4.2. Since finding the solution V
u

of (5.3) in the ideal I-PI is equivalent to

solving (3.19) in the ideal PI (see Theorem 5.3 with e ⌘ 0
m

for this issue), the ideal

I-PI have the same properties shown in Corollary 3.6 and Theorem 3.6 such as monotone

improvement (3.31) and uniform convergence on any compact subset ⌦ of R
A

(u
0

).

5.2 Invariant Explorations and Input-To-State Stability

If the exploration e
⌧

is given by a nonzero constant vector c such that c 62 kerG(x), then

the equilibrium “x = 0
n

” of the nonlinear system (3.1) is no more the equilibrium of the

explorized system (5.2). Moreover, a time-varying exploration e
⌧

makes the system (5.2)

non-autonomous. Hence, due to the non-zero (bounded) e
⌧

, the trajectory x
⌧

(z;u, e) for

an admissible policy u and an initial condition z 2 R
A

(u) may escape the ROA R
A

(u),

causing instability to the system. This is because unlike in a finite MDP [1] or linear

dynamical systems [5, 19, 23, 93], R
A

(u) is generally no more invariant under u and non-

zero e
⌧

. To prevent this pathological unstable situation due to e
⌧

, one should carefully

design the exploration in a way that x
⌧

(z;u, e) is confined in R
A

(u) for all ⌧ � t. Here,

the concept of invariant exploration plays an essential role in designing such e
⌧

.

Definition 5.2. For a given admissible policy u, let ⌦I(u) be an invariant subset of

R
A

(u) with respect to the autonomous non-explorized system (3.1) under u(x). Then, an

exploration e is said to be invariant on ⌦I(u) if

z 2 ⌦I(u) =) x
⌧

(z;u, e) 2 ⌦I(u), 8⌧ � t. (5.6)

Notice that the invariance (5.6) in Definition 5.2 is an extension of the invariance in

autonomous systems to the explorized system (5.2). Moreover, the invariant exploration

on a compact subset, say ⌦̄I(u), guarantees the existence of the unique solution x
⌧

(z;u, e)

for all ⌧ � t as shown below.

Proposition 5.1. For an admissible policy u, if the exploration e is invariant on a com-

pact subset ⌦̄I(u) of RA

(u), then for any z 2 ⌦̄I(u), the unique solution x
⌧

(z;u, e) exists
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for all ⌧ 2 [t,1).

Proof. At fixed time ⌧ , e
⌧

is constant, so f+G[u+e
⌧

] is locally Lipschitz continuous on D
by Lemma 2.6. In addition, the invariance of e guarantees that every solution x

⌧

(z;u, e) for

z 2 ⌦̄I(u) entirely lies on ⌦̄I(u). Therefore, the proof can be done by applying Theorem 3.3

in [32].

The invariant exploration is actually related to the input-to-state stability (ISS) for the

explorized system (5.2), which is the stability counterpart of Definition 3.2 and precisely

defined as follows.

Definition 5.3. For a given policy u, the system (5.2) with an exploration e is said to

be input-to-state stable on a subset ⌦ 2 D(D, {0
n

}) if there exist ↵(·), �(·) 2 K and

�(·, ·) 2 KL such that for any z 2 ⌦,

�
�kx

⌧

(z;u, e)k�  max

(

�
�kzk, ⌧ � t

�

, ↵

✓

sup
ts⌧

ke(s)k
◆

)

, 8⌧ � t. (5.7)

Now, consider the sequences {V
ui}1

i=0

and {u
i

}1
i=0

generated by the ideal I-PI (Algo-

rithm 5.1). Then, the following theorem states the bounding condition of exploration e

that guarantees the invariance of e and ISS on a compact set ⌦̄I(ui

; r
ui) defined as

⌦̄I(ui

; r
ui) :=

�

x 2 D : V
ui(x)  ↵̄ui(rui)

 

,

where r
ui > 0 is a constant satisfying B̄

0n(rui) ⇢ R
A

(u
i

) and defining a closed interval

[0, r
ui ] on which the class K functions ↵(·) and ↵̄(·) in (3.16) are defined.

Theorem 5.1. Consider the sequences {u
i

} and {V
ui} generated by the ideal I-PI (Algo-

rithm 5.1). If the exploration e satisfies

sup
t⌧<1

ke(⌧)k
2

<

s

↵
s

�

r
ui

�

sup
x2D �1(R(x))

, (5.8)

then under the policy u
i

(x) or u
i+1

(x),

1. e(⌧) is invariant on ⌦̄I(ui

; r
ui);

2. the explorized system (5.2) is input-to-state stable on ⌦̄I(ui

; r
ui).
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Proof. See Appendix D.4.

The next theorem is the counterpart of Theorem 5.1 of the global case D = R
A

(u
0

) =

Rn. In this case, the statement is dramatically simplified as shown below.

Theorem 5.2. Suppose S(x) is radially unbounded and D = R
A

(u
0

) = Rn. Then, for

under any u
i

(x) generated by the ideal PI (Algorithm 5.1),

• any exploration e is invariant;

• ISS holds globally for any z 2 Rn and any (bounded) exploration e
⌧

.

Proof. By the expansion property of the ROA shown in Remark 3.3, R
A

(u
0

) = Rn implies

that R
A

(u
i

) = Rn for all i 2 Z
+

. In this global case, V
ui(x) is radially unbounded by

Proposition 3.2, and so is S(x) by assumption. Hence, V
ui(x) is defined for all x 2 Rn;

the class K functions ↵
s

, ↵
ui , ↵̄ui , and their inverses all belong to K1 by Lemma 2.6 and

[32, Lemma 4.2], so they are defined on [0,1).

By the above argument, for any z 2 Rn, there exists r
min1

> 0 such that z 2 ⌦̄I(ui

; r
ui)

for all r
ui > r

min1

. Moreover, for any given (bounded) exploration e, if r
ui > 0 is chosen

in the range

r
ui > ↵�1

s

✓✓

sup
x2D

�
1

(R(x))

◆

·
✓

sup
t⌧<1

ke(⌧)k2
2

◆◆

:= r
min2

,

then (5.8) holds. Therefore, for any z 2 Rn and any given exploration e
⌧

, if r
ui is chosen

su�ciently large so “r
ui > max

�

r
min1

, r
min2

 

” holds, then both z 2 ⌦I(ui

; r
ui) and (5.8)

hold. Since z 2 Rn is arbitrary, the application of Theorem 5.1 completes the proof.

5.3 Advanced I-TD and Exploration Design Principles

If x
⌧

is generated by (5.2) with non-zero exploration e, then I-TDs (5.3) and (3.28) in

policy evaluation of the I-PI do not function properly. Meanwhile, if G(x) is not known a

priori, the next policy u
i+1

cannot be updated by policy improvement of I-PI, either. To

solve these two problems, the following e-dependent advanced I-TD equation is devised

from the I-TD equation (5.3):

V (x
t

) =

Z

t+Ts

t



r(x,u(x)) + 2µT (x)R(x)e(⌧)

�

d⌧ + V (x
t+Ts), (5.9)
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where (u, e) is a given policy-exploration pair such that u is admissible and e is invariant

on R
A

(u) under u; x denotes the trajectory x
⌧

(z;u, e) for z = x
t

2 R
A

(u). By solving the

advanced I-TD equation (5.9), it is meant to find the locally Lipschitz continuous positive

definite function V 2 C1

L

+(u) and an admissible policy µ 2 C0

L

(D) that satisfy (5.9) for all

z 2 R
A

(u). The two IRL methods named explorized I-PI and integral Q-learning in this

chapter will be designed based on the advanced I-TD. Compared to I-TD equation (5.3),

the exploration cross-product term µT (x)R(x)e(⌧) is added to cancel out the e↵ects of e

on I-TD and at the same time acquire the new policy µ(x) = u+(x) without knowing

G(x) a priori. Here, u+(x) is the desired next policy defined in terms of G(x) and rV (x)

as

u+(x) := �1

2
R�1(x)GT (x)rV (x).

In the following discussions related to the advanced I-TD, it is assumed without loss of

generality that the exploration e is T
s

-periodic, i.e., e
⌧

= e
⌧+Ts for all ⌧ � t.

Theorem 5.3. Finding V 2 C1

L

+(u) and an admissible policy µ 2 C0

L

(D) satisfying (5.9)

for all z = x
t

2 R
A

(u) is equivalent to solving

H(x,u(x),rV (x)) = 2'T (x)R(x)e
⌧

(5.10)

for all x 2 R
A

(u) and ⌧ 2 [t, t+T
s

), where ' := u+�µ is the policy approximation error

function.

Proof. Note that since u is admissible and e is invariant on R
A

(u) under the policy u, the

trajectory x
⌧

(z;u, e) lies entirely in R
A

(u), for all ⌧ � t. So, V 2 C1

L

+(u) satisfies

V (x
t+T

)� V (x
t

) =

Z

t+T

t

V̇ (x
⌧

) d⌧, (5.11)

for any initial value x
t

= z 2 R
A

(u), where the time derivative V̇ (x
⌧

) is given by

V̇ (x
⌧

) = rTV (x
⌧

) · (f(x
⌧

) +G(x
⌧

)[u(x
⌧

) + e
⌧

]). (5.12)

Define H(x, e) := H(x,u(x),rV (x)) � 2'T (x)R(x)e, where H(·, ·, ·) is the Hamiltonian
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defined by (3.18). Then, substituting (5.11) and (5.12) into the I-TD (5.9), we obtain

Z

t+T

t

H
�

x
⌧

(z;u, e), e
⌧

�

d⌧ = 0. (5.13)

Therefore, finding the solution of the advanced I-TD (5.9) for all x
t

= z 2 ⌦ is equivalent

to solving (5.13) 8z 2 ⌦. Since x
⌧

(z;u, e) 2 R
A

(u) for all ⌧ � t + T , following the same

steps with starting time t+MT , instead of t, yields

Z

t+(M+1)T

t+MT

H
�

x
⌧

(z;u, e), e
⌧

�

d⌧ = 0, 8M 2 Z
+

.

Then, summing up the integrals for all M 2 Z
+

, we obtain

h(t; z) ⌘
Z 1

t

H
�

x
⌧

(z;u, e), e
⌧

�

d⌧ = 0.

That is, h(t; z) = 0 for all t � 0 and all z 2 R
A

(u). So, we have

0 ⌘ ḣ(t; z) = �H�x
⌧

(z;u, e), e
⌧

�|
⌧=t

,

which implies that

H
�

z, e
t

�

= 0, 8t � 0 and 8z 2 R
A

(u). (5.14)

Since e is T -periodic, i.e., e
⌧

= e
⌧+T

for all ⌧ � t, (5.14) is reduced to

H
�

z, e
⌧

�

= 0, 8⌧ 2 [t, t+ T ) and 8z 2 R
A

(u),

which is equivalent to (5.10) by the definition ofH(z, e). The proof of the opposite direction

can be easily done by first integrating (5.10) and then substituting (5.11) and (5.12).

Using Theorem 5.3, one can easily verify that if V
u

2 C1

L

+(u), then

V (x) = V
u

(x), µ(x) = u+(x)|
V=Vu (5.15)

are a solution to the advanced I-TD equation (5.9) and satisfy

H(x,u(x),rV (x)) = 0, '(x) = 0
m

, 8x 2 R
A

(u).

However, the solution may not be unique. For example, if m = 1 and e
⌧

is constant and

nonzero, i.e., R(x) ⌘ r for some r > 0 and e
⌧

⌘ c for some c 2 R\{0} for all ⌧ 2 [t, t+T
s

),
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then Theorem 5.3 implies that µ can be obtained from V (x), r, and c as

µ(x) = u+(x) +H(x,u(x),rV (x))/rc.

This means that for a given V (x), there are infinitely many solutions depending on the

non-zero constant exploration e
⌧

⌘ c unless H(x,u(x),rV (x)) ⌘ 0. On the other hand,

for the case when G(x) is known, µ = u+ can be substituted to (5.9) to obtain the

following simplified advanced I-TD equation:

V (x
t

)� V (x
t+Ts) =

Z

t+Ts

t

⇥

r(x,u(x))�rTV (x) ·G(x)e
⌧

⇤

d⌧. (5.16)

In this case, the solution V = V
u

to (5.16) is unique as stated below.

Corollary 5.1. Assume that V
u

2 C1

L

+(u). If V 2 C1

L

+(u) is another solution to the

advanced I-TD equation (5.16), then V = V
u

on their domain R
A

(u).

Proof. The I-TD equation (5.16) is an advanced I-TD equation (5.9) with '(x) = 0
m

. So,

Theorem 5.3 implies that V 2 C1

L

+(u) satisfying (5.16) for all x 2 R
A

(u) is the solution

of the Hamiltonian equation

H(x,u(x),rV (x)) = 0, 8x 2 R
A

(u)

Then, the application of Theorem 3.4 concludes V = V
u

.

If G(x) is not known a priori, then we cannot substitute µ = u+ to the advanced I-TD

equation (5.9). In this general case, the uniqueness of (5.15) depends on the excitation

condition. To see this, let t
j

2 [t, t + T
s

] (j = 0, 1, · · · , L) be the time instants satisfying

“t
0

= t  t
1

 t
2

 · · ·  t
L

= t + T
s

” and assume that e
⌧

is piecewise constant and

determined by

e
⌧

= c
j

, 8⌧ 2 [t
j

, t
j+1

), (5.17)

where {c
j

}L
j=1

is a sequence of constant vectors in Rm. We also define the m ⇥ (l � k)

matrix C
k: l

for 1  k  l  L as

C
k: l

=
⇥

c
k

c
k+1

· · · c
l

⇤

.
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Then, under the substitution of (5.17), the Hamiltonian equation (5.10) can be written as

H(x,u(x),rV (x)) = 2'T (x)R(x)c
j

, 8x 2 R
A

(u), 8j 2 {1, 2, · · · , L}, (5.18)

and we obtain the uniqueness condition of the solution (5.15) of the advanced I-TD (5.9).

Assumption 5.2. There exist 
1

, 
2

> 0 such that


1

I
m

�
L�1

X

j=1

(c
j

� c
j+1

)(c
j

� c
j+1

)T � 
2

I
m

.

Theorem 5.4. Suppose e
⌧

is given by (5.17) and V
u

2 C1

L

+(u). Then, the solution to the

advanced I-TD (5.9) is uniquely determined by (5.15) under Assumption 5.2.

Proof. By Theorem 5.3 and the above discussion, solving (5.9) for all x 2 R
A

(u) is equiva-

lent to finding V 2 C1

L

+(u) and a policy µ 2 C0

L

(D) satisfying (5.18) for all x 2 R
A

(u) and

all j 2 {1, 2, · · · , L}. From (5.18), we have 2(c
j

�c
j+1

)TR(x)'(x) = 0 (j = 1, 2, · · · , L�1).
That is,

2(C
1:L�1

�C
2:L

)TR(x)'(x) = 0
L

. (5.19)

From (5.19) and Assumption 5.2, '(x) ⌘ 0
m

is obtained since Assumption 5.2 is equivalent

to


1

I  (C
1:L�1

�C
2:L

)(C
1:L�1

�C
2:L

)T  
2

I,

which implies rank (C
1:L�1

�C
2:L

) = m. Moreover, the substitution of '(x) = 0
m

into

(5.18) yields H(x,u(x),rV (x)) ⌘ 0. Therefore, the application of Theorem 3.4 proves

V = V
u

, and we obtain µ = u+|
V=Vu from '(x) ⌘ 0

m

.

Remark 5.1. Note that for Assumption 5.2, there should exists a subsequence {c
jk}m+1

k=1

whose di↵erence {c
jk � c

jk+1}m
k=1

is linearly independent; for this, L � m+ 1 is required.

For instance, if m = 1, two constants c
1

6= c
2

( e.g., c
1

= 1 and c
2

= 0) are necessary

to construct e
⌧

without violating Assumption 5.2. Remember that “Assumption 5.2” is

required to guarantee the uniqueness of the solution (5.15) as stated in Theorems 5.4.

Remark 5.2. If t
j+1

� t
j

= T
s

/L for all j 2 {0, 1, 2, · · · , L� 1}, then Assumption 5.2 is

equivalent to the existence of ⇡
1

, ⇡
2

> 0 such that

⇡
1

I
m

�
Z

t+(L�1)Ts/L

t

(e
⌧

� e
⌧+Ts/L

)(e
⌧

� e
⌧+Ts/L

)Td⌧ � ⇡
2

I
m

. (5.20)
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This can be provided as a general condition on the exploration e to guarantee the uniqueness

of the solution (5.15) of the advanced I-TD (5.9).

5.4 Explorized I-PI and Integral Q-learning

In this section, motivated by the advanced I-TD equations (5.9) and (5.16) in Section 5.3,

the two online IRL algorithms named explorized I-PI and integral Q-learning are proposed,

both of which exploit the exploration e
⌧

to simultaneously excite the state variables and

learn the next policy. Here, the former is partially model-free in a sense that the system

drift dynamics f is not necessarily known to run it; the latter is model-free so that it can

be applied to completely unknown dynamics (f ,G). While I-PI in Section 5.1 is an o↵-

line method, these partially/completely model-free IRL methods can run in online fashion

even when the nonlinear system undergoes exploration e
⌧

. These online IRL methods are

similar to the ideal I-PI (Algorithm 5.1) in principle, but di↵erent in practical manners as

described below.

1. At each i-th policy evaluation and improvement steps of the ideal IRL, the IRL agent

utilizes advanced I-TDs to find V
i+1

and µ
i+1

satisfying V
i+1

⇡ V µi and µ
i+1

⇡ µ+

i+1

on ⌦
i

, where µ+

i+1

is given by

µ+

i+1

(x) := �1

2
R�1(x)GT (x)rV µi(x).

Note that the IRL methods in this section can be considered the same to the ideal

PI or I-PI in the iteration domain as long as the generated value functions and

policies have no errors. Obviously, if V
i+1

= V µi , µ
i+1

= µ+

i+1

for all i 2 Z
+

, and

µ
0

= u
0

, then we have V
i+1

= V
ui and µ

i+1

= u
i+1

for all i 2 Z
+

, where (V
ui ,ui+1

)

is the sequence generated by the ideal PI or I-PI. Here, the approximation errors

|Vµi
(x)�V

i+1

(x)| and kµ+

i+1

(x)�µ
i+1

(x)k come from the advanced I-TDs, but can be

made small by su�ciently exploring the state-space with well-designed explorations.
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2. While the ideal I-PI cannot explore the state-space in online fashion, the explorized

IRLs use invariant explorations to simultaneously excite the state variables in a stable

manner. At each iteration, the IRL methods generate an invariant exploration e
⌧

for

stable learning (see Section 5.5 for more details).

5.4.1 Explorized Integral Policy Iteration

The first IRL method is partially model-free and named explorized I-PI in Algorithm 5.2.

As can be seen from (5.21), explorized I-PI comes from the advanced I-TD (5.16) and is

able to simultaneously excite the states during policy evaluation using the exploration e
⌧

.

Unlike the IRL algorithms in Chapter 4, the I-TD equation (5.21) contains the explorized

Algorithm 5.2: Explorized Integral Policy Iteration

Input: an initial admissible policy µ
0

: D ! Rm.

Output: the optimal solution (u⇤,V⇤).

1 i 0;

2 repeat

3 Policy Evaluation: Given an admissible policy µ
i

and given z 2 R
A

(µ
i

),

1. generate an exploration e
⌧

that is invariant on R
A

(µ
i

) under µ
i

;

2. find V
i+1

2 C1

L+

(µ
i

) such that

V
i+1

(x
t

)� V
i+1

(x
t+Ts) =

Z

t+Ts

t

⇥

r(x,µ
i

(x))�rTV
i+1

(x) ·G(x)e
⌧

⇤

d⌧, (5.21)

where x ⌘ x
⌧

(z;µ
i

, e);

4 Policy Improvement: update the next admissible policy µ
i+1

: D ! Rn

which is locally Lipschitz continuous and whose restriction on R
A

(µ
i

) satisfies

µ
i+1

(x) = �1

2
R�1(x)GT (x)rV

i+1

(x) 8x 2 R
A

(µ
i

);

5 i i+ 1;

until6 convergence is met.
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term “rTV
i+1

(x) ·G(x)e
⌧

” to cancel out the e↵ects of the exploration e
⌧

, but the knowl-

edge of G(x) should be explicitly used for this exploration cancellation and policy im-

provement as shown in Algorithm 5.2. When e
⌧

⌘ 0
m

, Algorithm 5.2 becomes the ideal

I-PI described in Algorithm 5.1, provided that (5.21) holds for all z = x
t

2 R
A

(µ
i

). In

explorized I-PI, e
⌧

does not need to satisfy the excitation conditions such as that in As-

sumption 5.2 as neither does the advanced I-TD (5.16). By Corollary 5.1, if su�ciently

explores the state space in a stable manner, explorized I-PI guarantees the uniqueness

of the solution V
i

= V µi for any given exploration e
⌧

, and one just need to e�ciently

explore the state-space using e
⌧

without considering any excitation conditions on e
⌧

in

Section 5.3.

5.4.2 Model-Free Integral Q-learning

Integral Q-learning is the other online IRL algorithm proposed in this chapter, which is

derived from the advanced I-TD equation (5.9) so can be implemented without knowing

the system dynamics (f ,G). Here, the exploration e
⌧

plays a central role in relaxing

the requirement of the knowledge of G(x). Algorithm 5.3 describes the processes of the

proposed integral Q-learning, where the IRL agent generates an invariant exploration e

under µ
i

and finds the solution V
i+1

2 C1

L

+(µ
i

) and µ
i+1

2 C0

L

(D), with µ
i+1

(0
n

) = 0
m

,

of the advanced I-TD (5.22) all at the same time in the policy evaluation and improvement

step.

For ease of explanation, it is assumed from now on that the exploration e applied to

integral Q-learning is given by (5.17) for some constant vectors {c
j

}L
j=1

. In this case, for

the uniqueness of the solution (V
i+1

,µ
i+1

) = (Vµi
,µ+

i+1

), the vectors {c
j

}L
j=1

should be

carefully chosen so that they satisfy Assumption 5.2. In general cases, (5.20) can be an

alternative to Assumption 5.2.
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Algorithm 5.3: Model-Free Integral Q-Learning

Input: an initial admissible policy µ
0

: D ! Rm.

Output: the optimal solution (u⇤,V⇤). satisfying (3.23) and (3.5).

1 i 0;

2 repeat

3 Policy Evaluation & Improvement:

Given an admissible policy µ
i

and given z 2 R
A

(µ
i

),

1. generate an exploration e
⌧

that is invariant on R
A

(µ
i

) under µ
i

;

2. find V
i+1

2 C1

L

+(µ
i

) and the next admissible policy µ
i+1

2 C0

L

(D) satisfying

V
i+1

(x
t

)� V
i+1

(x
t+Ts) =

Z

t+Ts

t



r(x,µ
i

(x)) + 2µT

i+1

(x)R(x)e
⌧

�

d⌧ (5.22)

where x ⌘ x
⌧

(z;µ
i

, e).

4 i i+ 1;

until5 convergence is met.

5.5 Exploration Design Considerations

In the previous section, we have emphasized the excitation condition (Assumption 5.3) for

integral Q-learning to uniquely obtain V
i+1

⇡ Vµi
and µ

i+1

⇡ µ+

i+1

at each iteration. On

the other hand, explorized I-PI does not need such an excitation condition at the expense

of model dependency on G(x). In this section, suppose that at i-th iteration, V
i+1

and

µ
i+1

has no error, i.e., V
i+1

= Vµi
and µ

i+1

= µ+

i+1

on R
A

(µ
i

), and consider the next

policy µ
i+1

. Let ↵
i+1

and ↵̄
i+1

be of class K satisfying

↵
i+1

(kxk)  V
i+1

(x)  ↵̄
i+1

(kxk).

In this ideal case, the explorized I-PI and integral Q-learning methods are equal to I-PI

in the iteration domain, so µ
i+1

is admissible as long as so is µ
i

. Moreover, Theorem 5.1
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implies that if the exploration e at the (i+ 1)-th step is bounded by

sup
t⌧<1

ke(⌧)k <
s

↵
s

�

rµi

�

sup
x2D �1(R(x))

, (5.23)

where rµi
> 0 is chosen such that ⌦̄I(µ

i

; rµi
) ⇢ R

A

(µ
i

), then

1. e is invariant on ⌦̄I(µ
i

; rµi
) under the next policy µ

i+1

;

2. the system ẋ = f(x)+G(x)(u(x)+ e
⌧

) is input-to-state stable on ⌦̄I(µ
i

; rµi
) under

the next policy u = µ
i+1

(x).

If D = R
A

(µ
i

) = Rn and S(x) is radially unbounded, then this ISS holds globally for any

(bounded) exploration e
⌧

by Theorem 5.2. Here, the condition R
A

(µ
i

) = Rn is approxi-

mately achived if

1. R
A

(µ
0

) = Rn;

2. all of the policies generated by either of the IRL methods up to the i-th step are

approximately equal to those generated by the ideal I-PI under the same initial

admissible policy u
0

= µ
0

.

In case of that e is constructed from some constant vectors {c
j

}N
j=1

and satisfies (5.17),

the boundedness condition (5.23) is replaced by

kc
j

k <
s

↵
s

�

rµi

�

sup
x2D �1(R(x))

, 8j 2 {1, 2, · · · , N}. (5.24)

Now, the remaining question is what to do when the state x
t

is outside the invariant

region ⌦I(µ
i

; rµi
) but inside R

A

(µ
i

) during online learning at i-th or (i + 1)-th step.

In this case, since x
t

is outside ⌦I(µ
i

; rµi
), the rare exploration e

⌧

satisfying (5.7) is

no more safe. In this particular case, the best way to preserve invariance and ISS is to

apply the current policy with zero exploration e ⌘ 0
m

until some finite time t0 � t at

which x
⌧

enters into ⌦I(µ
i

; rµi
), i.e., x

t

0 2 ⌦I(µ
i

; rµi
).1 Then, as illustrated in Fig. 5.1,

1Since µi and µi+1 are admissible, there exists finite time t

0 2 [t,1) such that x⌧ ⌘ x⌧ (z;µi) for z on
their region of attraction enters to the smaller set ⌦I(µi; rµi

) ⇢ RA(µi) at t

0 under the zero exploration
e⌧ = 0m.
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Figure 5.1: Switching zero-to-nonzero exploration strategy for invariance and ISS.

a non-zero exploration e satisfying (5.23) or (5.24) is applied thereafter which guarantees

invariance and ISS on ⌦I(µ
i

; rµi
). Note that in the global case (D = R

A

(µ
i

) = Rn) with

radially unbounded S(x), explorized I-PI or integral Q-learning can be performed without

such consideration on the invariance and ISS. In the local case, such processes on the

exploration e can be also removed when e is su�ciently small and x
⌧

starts from a region

near the origin that is small enough to be contained by ⌦I(µ
i

; rµi
).

5.6 Neural-Networks-Based Implementations

The partially model-free explorized I-PI (Algorithm 5.2) and the model-free integral Q-

learning (Algorithms 5.3) can be implemented in the least-squares (LS) sense using neural

networks (NNs) to approximate V
i+1

and µ
i+1

. To explain this, let {�c
j

2 C1

L

+(D)}1
j=1

and

{�a
j

2 C0

L

(D) : �a
j

(0
n

) = 0
m

}1
j=1

be the sequences of real-valued NN activation functions
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that are linearly independent and complete on their respective function spaces

8

>

>

<

>

>

:

C1

L

+(D) = {V 2 C1

L

(D) : V (x) 2 R, V is positive definite },

C0

L

0(D) := {f 2 C0

L

(D) : f(x) 2 Rm, f(0
n

) = 0
m

}.

Here, the superscripts ‘a’ and ‘c’ denote actor and critic, respectively. Using these activa-

tion functions, V
i+1

2 C1

L

+(D) and a policy µ
i+1

2 C0

L

0(D) are represented as

8

>

>

<

>

>

:

V
i+1

(x) =
P1

j=1

w
ij

�c
j

(x),

µ
i+1

(x) =
P1

j=1

v
ij

�a
j

(x),

(5.25)

respectively, where w
ij

2 R and v
ij

2 Rm are weight vectors; we consider (N
c

,N
a

)-

truncation of (5.25) as the NN expressions of V
i+1

and µ
i+1

:

8

>

>

<

>

>

:

V̂
i+1

(x) =
P

Nc
j=1

w
ij

�c
j

(x) ⌘ wT

i

�
c

(x),

µ̂
i+1

(x) =
P

Na
j=1

v
ij

�a
j

(x) ⌘ VT

i

�
a

(x),

(5.26)

where

8

>

>

<

>

>

:

w
i

:= [w
i1

, w
i2

, · · · , w
iNc ]

T 2 RNc , V
i

:= [v
i1

,v
i2

, · · · ,v
iNa ]

T 2 RNa⇥m,

�
c

(x) := [�c
1

(x), · · · ,�c
Nc

(x)]T 2 RNc , �
a

(x) := [�a
1

(x), · · · ,�a
Na

(x)]T 2 RNa .

Using these expressions, (5.25) can be rewritten as

8

>

>

<

>

>

:

V
i+1

(x) = wT

i

�
c

(x) + "c
i

(x),

µ
i+1

(x) = VT

i

�
a

(x) + "a
i

(x),

(5.27)

where "c
i

(x) and "a
i

(x) are NN reconstruction errors. Note that if the domain is restricted

to a compact subset of R
A

(µ
i

) ✓ D such as ⌦I(µ
i

; r
ui) that belongs to R

A

(µ
i

), then there

exist N
c

, N
a

2 N such that the NN errors "c
i

and "a
i

in (5.27) and r"c
i

are all bounded

on the compact set. Also note that each �c
j

is positive definite for V
i+1

� 0 and that

�
a

(0
n

) = 0
m

for µ
i+1

(0
n

) = 0
m

.
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Now, consider the LS implementation of integral Q-learning (Algorithm 5.3). In this

case, substituting (5.27) into the advanced I-TD equation (5.22), we obtain

�
i

(x
t

, e) =
⇥

�
c

(x
t+Ts)� �c

(x
t

)
⇤

T

w
i

+

Z

t+Ts

t



r(x,µ
i

(x)) + 2�T

a

(x)V
i

Re
⌧

�

d⌧, (5.28)

where �
i

(x
t

, e) 2 R is the advanced I-TD error given by

�
i

(x
t

, e) = "c
i

(x
t

)� "c
i

(x
t+Ts)� 2

Z

t+Ts

t

("a
i

(x))TR(x)e
⌧

d⌧.

Define v
i

2 RNam as v
i

:= col{V
i

}. Then, applying �T

a

(x)V
i

R(x)e =
�

R(x)e⌦�
a

(x)
�

T

v
i

to (5.28) and then rearranging the equation, we obtain the following expression regard-

ing (5.22):

�
i

(x
t

; e) =  T (x
t

; e) · ✓
i

+ Z(x
t

;µ
i

), (5.29)

where ✓
i

= col{w
i

,v
i

} is the vector of unknown weights;  (x
t

; e) and Z(x
t

;µ
i

) are given

in Table 5.1. The advanced I-TD equation (5.21) can be also formulated as (5.29) with ✓
i

,

 (x
t

; e), and Z(x
t

;µ
i

) given in Table 5.1. Here, the advanced I-TD error �
i

(x
t

; e) for the

explorized I-PI is omitted, but can be easily obtained by the similar procedure. In policy

improvement of the explorized I-PI, the next neuro-policy µ̂
i+1

can be updated by

µ̂
i+1

(x) = �1

2
R�1(x)GT (x)r�

c

(x)w
i

(5.30)

using V̂
i+1

in (5.26), instead of V
i+1

, as was done in [50].

Let N
✓

be the number of elements of ✓
i

, e.g., N
✓

= N
c

+ N
a

for (5.22). Then, we

have N
✓

unknowns in the 1-dimensional equation (5.29). In the implementations, ✓
i

will

be uniquely determined in LS sense. Define  [k], �
i

[k], and Z[k] as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

 [k] :=  (x
t+kT

, e),

�
i

[k] := �
i

(x
t+kT

, e),

Z[k] := Z(x
t+kT

,µ
i

).
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Table 5.1: Functions and vectors of I-TD error equation (5.29) for online NN Implemen-
tations of explorized I-PI and integral Q-learning

Alg.
No.

Process
Type

Functions and Vectors in (5.29)

5.2
Policy

Evaluation

✓i = wi

 (x; e) = �c(xt+Ts)� �c(xt)�
Z t+Ts

t
rT�c(x) ·G(x)e⌧ d⌧

Z(xt;µi) =

Z t+Ts

t
r(x,µi(x)) d⌧

5.3

Policy
Evaluation

&
Improvement

✓i = col{wi,vi}

 (x; e) = col

⇢

�c(xt+Ts)� �c(xt),

Z t+Ts

t
2�a(x) ⌦ (R(x)e⌧ ) d⌧

�

Z(xt;µi) =

Z t+Ts

t
r(x,µi(x)) d⌧

Then, referring x
t+(k�1)Ts

as a starting point of the advanced I-TDs, the following gener-

alized I-TD error equation can be derived from (5.29):

�
i

[k] =  T [k] · ✓
i

+ Z[k], (5.31)

which holds for any k 2 N since x
⌧

(z;µ
i

, e) remains in an invariant region for all ⌧ � t

by the well-designed exloration e
⌧

. Suppose the data ( [k], Z[k]) for k = 1, 2, · · · , N are

all available, and define the LS error E to be minimized as E2 := 1

2

P

N

k=1

�2
i

[k]. Then,

di↵erentiating E2 in terms of ✓
i

with the substitution of (5.31) yields

@E2

@✓
i

=
N

X

k=1

@�
i

[k]

@✓
i

�
i

[k] =
N

X

k=1



 [k] T [k] · ✓
i

+ [k]Z[k]

�

.

Equating this to zero and rearranging the equation, we obtain the LS solution of the form

✓
i,LS

= �
✓

N

X

k=1

 [k] T [k]

◆�1

✓

N

X

k=1

 [k]Z[k]

◆

. (5.32)

For the existence of the inverse in (5.32), we need the following excitation condition:
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Assumption 5.3. There exist 
5

, 
6

> 0 such that


5

I 
N

X

k=1

 [k] T [k]  
6

I.

Similar to Assumption 5.2, N � L
✓

is necessary to satisfy Assumption 5.3, so at least

L
✓

-number of data should be collected to obtain the LS solution (5.32) at each iteration.

The whole control scheme for integral Q-learning and its LS implementation is demon-

strated in Fig. 5.2. At each iteration, the LS solver collects the data needed to calculate

 [k], �
i

[k], and Z[k] for k = 1, 2, · · · , N , and then finds the weight vectors w
i

and v
i

satisfying (5.32), both of which are transferred to the corresponding actor and critic NNs

to update their weights. Here, the actor NN generates the control input; the output of the

critic NN V̂
i+1

(x) is used in the exploration generator module to calculate the bound (5.23)

on the exploration e
⌧

. In exploration generator, the exploration e
⌧

is constructed, and

modified if necessary, that plays a key role in exciting the signal  (x
t

; e) in (5.32), and

satisfies i) Assumption 5.2 (or (5.20)) and ii) the boundedness condition (5.23) for ISS

and invariance of e. The whole control scheme with explorized I-PI can be described in a

similar manner by modifying LS solver and actor NN blocks.

x = f(x) + G(x)[u + e]
.

u + e

+
+ν     = V  ϕ (x)  ^

i + 1 i a
T

u = ν      ^
i + 1

x

Actor NN (Controller) Nonlinear System

Exploration Generator
exploration e (τ)

Policy Evaluation & Improvement

Find θ  = col{w  , v } satisfyingi i

V    (x) = w  ϕ (x)  
^
i + 1 i c

T

Critic NN (Value Function)

LS Solver

i

V    
^
i + 1

Vi

wi

µ
µ

Figure 5.2: The whole control scheme with integral Q-learning (Algorithm 5.3) and its LS
implementation.
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Figure 5.3: The free body diagram of the swing-up pendulum.

5.7 Numerical Simulations: Pendulum Examples

In this section, the integral Q-learning (Algorithm 5.3) is simulated to verify and discuss

its performance. The simulation studies also show the practical remarks on the integral

Q-learning method. In the simulations, we consider the adaptive optimal stabilization

problem of the swing-up pendulum [38,62] illustrated in Fig. 5.3 and modeled by

J ✓̈ �mgl sin ✓ +mgu cos ✓ = 0, (5.33)

where m is the mass of the pendulum, J is the moment of inertia with respect to the

pivot point P
0

, l is the distance from the pivot to the center of mass, ✓ is the angle from

the vertical line L
0

to the pendulum in counter-clockwise direction, and g is the gravity
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constant. These parameters are given by m = 1 [kg], l = 1 [m], J = 1 [kg·m2], and g = 9.81

[kg·m/s2], but assumed completely unknown in the simulations. Defining the state variable

x = [x
1

, x
2

]T as x
1

:= ✓ and x
2

:= ✓̇, the pendulum dynamics (5.33) can be rewritten in

a form ẋ = f(x) + g(x)u, where

f(x) =



x
2

J�1mgl sinx
1

�

and g(x) =



0
�J�1ml cosx

1

�

. (5.34)

Note that the pendulum is locally controllable, i.e., its linearization near the equilibrium

x = 0
2

:

�ẋ = A�x+B�u (5.35)

is controllable, where �x and �u are small perturbations from x = 0
2

and u = 0, and

A 2 R2⇥2 and B 2 R2 are unknown matrices given by

A := rfT (x)|
x=02 =



0 1
mgl/J 0

�

and B := rg(x)|
x=02 =



0
ml/J

�

,

which is obtained by approximating sin ✓ ⇡ ✓ and cos ✓ ⇡ 1 near ✓ = 0. In the simulations,

it is assumed that the functions f(x) and g(x) are completely unknown, but an initial

admissible linear policy µ
0

(x) = 30(x
1

+ x
2

) is given a priori ; the sampling period T
s

> 0

and the number of data N collected per iteration are set to T
s

= 50 [ms] and N = 50, so

that the LS solution ✓
i,LS

2 R5 for ✓ = col{w,v} is calculated by (5.32) every 2.25 [s]. The

initial condition is given by z = [ 0.01, 0 ]T to make the pendulum initially at a upright

position, which is necessary since the initial policy guarantees asymptotic stability only in

a local region of the equilibrium x = 0
2

.

5.7.1 Example 1: Adaptive Linear Quadratic Regulators

As a motivating example, we first apply the integral Q-learning to the linearized pendulum

model (5.35) with the matrices A and B completely unknown and the cost

r(x, u) = 10x2
1

+ 10x2
2

+ u2.
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In this LQR case, the policy u is linear in x, and the value function is quadratic in x as

shown in Chapter 4. So, we choose the activation functions in the critic and actor NNs

V̂
i+1

(x) = wT

i

�
c

(x) and µ̂
i+1

(x) = vT

i

�
a

(x) as

�
c

(x) = col{x2
1

, x
1

x
2

, x2
2

} and �
a

(x) = col{x
1

, x
2

}.

In this LQR case, if the system matrices A and B are known a priori, then the optimal

parameters w⇤ and v⇤ can be obtained from the solution of the ARE as

w⇤ = [ 70.0526, 40.2342, 7.0876 ]T and v⇤ = [ 20.1171, 7.0876 ]T . (5.36)

Throughout the LQR learning, the exploration e(⌧) described as

e(⌧) =

8

>

>

<

>

>

:

c for ⌧ 2 [t, t+NT
s

/2)

�c for ⌧ 2 [t+NT
s

/2, Nt+ T
s

)

(5.37)

for some c > 0 is applied until 22.5 [s] and then eliminated thereafter to see the convergence

at the end.

LQR Simulations with Linearized and Nonlinear Pedulum Models (c = 4)

Figs. 5.4 and 5.5 shows the evolution of the NN weights and the state trajectories for

c = 4, where we also plotted the simulation results of integral Q-learning applied to the

nonlinear pendulum models under the same conditions and same LQ parameterizations.

As can be seen from Fig. 5.4, the final weights

w(1)

f

= [ 70.0526, 40.2342, 7.0876 ]T and v(1)

f

= [ 20.1171, 7.0876 ]T (5.38)

for the LQR linear model case exactly matches with the optimal weights (5.36), which

shows the convergence of interal Q-learning to the optimal solution. On the other hand,

the nonlinear case exhibit weight convergence to a point slightly di↵erent from w⇤ and v⇤
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as shown in Fig. 5.4; moreover, Fig. 5.5 describes that the nonlinear e↵ects cause the state

trajectories less perturbed from the origin x = 0
2

than the case of linear pendulum model.

In Fig. 5.4, the marked points indicate the time instant the next LS solution ✓
i+1,LS

is

calculated, and the oscillations were introduced due to the periodic exploration for online

learning.

Discussions and Comparisons with the Nonlinear Pendulum Models (c = 10)

The parameter convergence to a point other than the LQR solution (5.36) in the nonlinear

case (c = 4) in Fig. 5.4 may be the result of the compensation of the nonlinearities done

by the RL agent to improve the control performance at the points other than the zero

equilibrium x = 0
2

. This can be verified by comparing the performance of the final policies

consisting of their stationary actor weights obtained by the integral Q-learning iteration

at the ends. For this comparison, we have applied integral Q-learning with c = 10 to the

nonlinear dynamics (5.33) and as a result obtained the final critic and actor weights as

follows:

w(2)

f

= [ 70.0526, 40.2342, 7.0876 ]T and v(2)

f

= [ 25.0257, 7.5505 ]T . (5.39)

The final policies with the final actor weights v(1)

f

and v(2)

f

given in (5.38) and (5.39) are

simulated for the initial condition ✓
0

= ⇡/2.5 and ✓̇
0

= 0 that is close to the horizontal

(uncontrollable) position ✓ = ⇡/2 and far from the upright position ✓ = 0. So, the nonlinear

terms are highly excited at the beginning of the simulations.

The state trajectories under the two final policies are shown in Fig. 5.6. While the

policy trained with the linear model (5.35) under small exploration c = 4 fails to stabilize

the pendulum to the upright position (Fig. 5.6(b)), the one trained with the nonlinear

full dynamics (5.33) under the relatively large exploration c = 10 e↵ectively control the

pendulum to achieve the goal (Fig. 5.6(a)). From this observation, we can see that though

the policy of the latter case is not optimal in a vicinity of the equilibrium, it is robust with
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Figure 5.4: (LQR examples: evolution of actor-critic NN weights) Simulation re-
sults for the linear model (5.35) and the nonlinear dynamics (5.33) under c = 4 and the LQ
structure of the policy and value function. The RL agent tunes the weights in nonlinear
case slightly di↵erent from the linear one to compensate the nonlinear e↵ects.
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Figure 5.5: (LQR examples: state trajectories) Simulation results for the linear
model (5.35) and the nonlinear dynamics (5.33) under c = 4 and the LQ structure of
the policy and value function. For the same conditions, the states with the nonlinear
model are less perturbed from the origin due to the nonlinearities.
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Figure 5.6: (LQR examples: state trajectories in a nonlinear region) State trajec-

tories for the final linear policies with their weights v(1)

f

in (5.38) and v(2)

f

in (5.39), trained
with the linear model (5.35) under c = 4 and the nonlinear dynamics (5.33) under c = 10,
respectively. Though both weights are tuned with the same actor-critic NN structures, the
latter explored the nonlinear regions during the learning period, which finally gives the
robustness to nonlinearities in the pendulum.

106



respect to the nonlinearities it experienced during the learning period. On the other hand,

since the nonlinear optimal control problem can be approximated by an LQR problem

near the equilibrium, if the exploration is su�ciently small so the RL agent trains the

actor only in a vicinity of x = 0
2

, then we can expect that the weights converge to a point

close to the LQR solution (5.36) (see Fig. 5.4 as an example).

5.7.2 Example 2: Reinforcement Learning of Nonlinear Optimal Control

In this case, we consider the integral Q-learning applied to the nonlinear pendulum dy-

namics (5.33) with completely unknown functions f(x) and g(x) in (5.34) and the cost

r(x, u) = 10x4
1

+ 10x4
2

+ 10x2
1

+ 10x2
2

+ u2,

which is the 4th-order terms plus the same quadratic cost in the previous simulation.

To approximate the high-order terms caused by nonlinearities in the pendulum dynamics

and the terms x4
1

and x4
2

in the cost, the activation functions of the critic NN V̂
i+1

(x) =

wT

i

�
c

(x) were chosen as

�
c

(x) = col{x2
1

, x
1

x
2

, x2
2

,
| {z }

2nd-order terms

x4
1

, x3
1

x
2

, x2
1

x2
2

, x
1

x3
2

, x4
2

| {z }

4th-order terms

} 2 R8

To determine the actor NN structure, we assume it is known a priori that the first com-

ponent of g(x) is zero, and that the second component is non-zero near the equilibrium

x = 0
2

by the local controllability of the pendulum. Then, we can see that under the

approximation g(x) ⇡ [ 0 � ]T near the origin x = 0
2

for some unknown � 2 R, we have

µ
i+1

(x) = �gT (x)rV
i+1

(x) ⇡ �[ 0 � ] ·rT�
c

(x)w
c

= �� ·rT

x2
�
c

(x)w
c

.

= �� ·wT

c

col{0, x
1

, 2x
2

, 0, x3
1

, 2x2
1

x
2

, 3x
1

x2
2

, 4x3
2

}.

So, the activation function of the actor NN µ̂
i+1

(x) = vT

i

�
a

(x) can be chosen as

�
a

(x) = col{x
1

, x
2

, x3
1

, x2
1

x
2

, x
1

x2
2

, x3
2

},
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which consists of all 1st- and 3rd-order terms of x
1

and x
2

; the zero functions in r
x2�c

(x)

are removed in the set of actor activations.

The the weight parameters and state/input trajectories under the biased exploration

applied until t = 22.5 [s] and defined by

e(⌧) =

8

>

>

<

>

>

:

c for ⌧ 2 [t, t+NT
s

/2)

0 for ⌧ 2 [t+NT
s

/2, Nt+ T
s

)

(5.40)

for c = 4 are shown in Figs. 5.7, 5.8, and 5.9. As shown in Figs. 5.7 and 5.8, all of

the weights in the actor and critic NNs converge to a possibly near-optimal value after

12.5 [s]. Especially, the trajectories of the weights corresponding to the quadratic activation

functions of the critic NN and the linear activations of the actor NN are almost same to
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Figure 5.7: (RL of nonlinear optimal control) Variations of the actor NN weights.
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those in Fig. 5.4. Actually, the final critic and actor weights in this case are given by

8

>

>

<

>

>

:

w(3)

f

= [ 73.5444, 40.5142, 7.1065, 44.4183, 33.6221, 10.1088, 0.1591, 0.3364 ]T ;

v(3)

f

= [ 20.2389, 7.1012, 17.4999, 8.0659, 0.6003, 0.6496 ]T .

Comparing the first three and two components of w(3)

f

and v(3)

i

with (5.36), one can

see that the linear and quadratic weights definitely converge to a point near the LQR

solution. On the other hand, due to the biased exploration (5.40), the state and input

trajectories shown in Fig. (5.9) oscillates from a point which is of course di↵erent from the

zero equilibrium x = 0
2

and the zero input u ⌘ 0.

The state trajectories for the initial condition ✓ = ⇡/2.5 and ✓̇ = 0 under the final

policies with (a) the final actor weights v(2)

f

(2nd-order approximation) and (b) v(3)

f

(4th-

order approximation) are illustrated in Fig. 5.10. Here, by the e↵ects of the nonlinear terms

in the actor, the states under the high-order actor weights v(3)

f

in (5.39) converge much

faster than the second-order ones v(2)

f

. Moreover, although the final actor weights v(3)

f

are

learned with a smaller exploration, it is more robust than the former with respect to the

system nonlinearities as shown in Figs. 5.11. Obviously, for the initial condition ✓ = ⇡/2.2

and ✓̇ = 0, the state trajectories under the final policies with v(3)

f

e↵ectively converge

to the up-right state (Fig. 5.11(a)), but those with v(2)

f

do not as shown in Fig. 5.11(b).

Therefore, the introductions of the high-order terms in the critic and actor NNs finally

enhance both control performance of robustness.

To properly learn the coe�cients of the 3rd- and 4th-order terms (and higher-order

terms) in the actor and critic NNs, it is necessary to properly apply a biased exploration

as the one (5.40) in the previous simulations. Otherwise, the higher-order terms become

unobservable and cannot be estimated near the equilibrium x = 0
2

. This is because of the

fact that a nonlinear optimal control problem is approximated as an LQR problem where

the activation functions of the critic and actor NNs are quadratic and linear, respectively;

the other high-order terms in this case are either zeros or very small to be detected.
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Figure 5.12: (RL of nonlinear optimal control) Variations of the critic NN weights
corresponding the quadratic activation functions under unbiased exploration.

Figs. 5.12, 5.13, and 5.14 show the weight variations of the critic and actor NNs under

the unbiased exploration (5.37) with c = 4. As can be seen from the figures, the 3rd-order

and 4th-order coe�cients in the actor and critic NNs do not converge but oscillates within

bounded regions due to the unobservability of the high-order terms at x = 0
2

. On the

other hand, the weights corresponding the quadratic and linear activation functions of the

critic and actor NNs converge to a point close to the optimal solution w⇤ and v⇤ in (5.36)

since they are observables near and every regions in the state space.

5.8 Summary

In this chapter, two online IRL methods that are able to explore the state space were

proposed and analyzed based on the nonlinear I-PI and the concepts of both invariant

explorations and advanced I-TD extended from the ideas of RL. These online IRL meth-

ods e�ciently use the explorations to excite the necessary signals for online learning and,

in integral Q-learning, to relax the model requirements; integral Q-learning provided the
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Figure 5.13: (RL of nonlinear optimal control) Variations of the critic NN weights
corresponding the 4th-order activation functions under unbiased exploration.
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model-free online learning solution for the CT nonlinear optimal control problems with

unknown dynamics, while the other one named explorized I-PI was provided as an ef-

fective online solution when the input coupling terms in the dynamics are known. The

properties such as ISS, uniqueness of advanced I-TD solution, and the convergence to the

solution were studied in relation to the design of the exploration signal. Finally, numerical

simulations for inverted pendulum were carried out to verify the performance of integral

Q-learning, show a practical application example, and further study the algorithm.
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Chapter 6

Adaptive Inverse Optimal Design of

Cooperative Graphical Formation

Control for Multiple Mobile Robots

In the previous two chapters, we studied adaptive optimal control methods from the per-

spectives of RL. In this chapter, from the control-theoretic perspectives, I present an

adaptive inverse optimal design methodology for cooperative graphical formation control

(CGFC) of multiple mobile robots whose communication topology is represented by an

undirected graph G = {N , E ,A} (see Appendix C for a brief review of graph theory).

In the design, the following kinematic and dynamic models are considered for each i-th

mobile robot (i 2 N ):

Kinematics:

2

6

6

6

6

4

ẋ
i

ẏ
i

✓̇
i

3

7

7

7

7

5

=

2

6

6

6

6

4

⌫
i

cos ✓
i

⌫
i

sin ✓
i

w
i

3

7

7

7

7

5

, (6.1)

Dynamics:

2
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4

m
i11

m
i12

m
i12

m
i11

3

7

5

2

6

4

ẇ
iR

ẇ
iL

3

7

5

+

2

6

4

b
i

↵
i

w
i

R�1

i

�↵
i

w
i

R�1

i

b
i

3

7

5

2

6

4

w
iR

w
iL

3

7

5

=

2

6

4

⌧
iR

⌧
iL

3

7

5

, (6.2)

where [x
i

, y
i

]T 2 R2 and ✓
i

2 R are the position and the angle orientation of the i-th mobile

robot; ⌫
i

2 R and w
i

2 R are linear and angular velocities of the i-th robot; w
iL

2 R and

w
iR

2 R denote the angular velocities of the left and right wheels of the robot; ⌧
iR

2 R and

⌧
iL

2 R represents the torques applied to the robot’s left and right wheels, respectively.

In the dynamics (6.2), b
i

> 0 denotes the damping coe�cient, R
i

> 0 is the half of

the width of the i-th mobile robot, and ↵
i

> 0 is the constant defined as ↵
i

:= r2
i

m
ic

d
i

/2,

where r
i

is the radius of the wheel, d
i

is the distance from the center of mass P c

i

of the
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Figure 6.1: The spatial parameters of mobile robots.

i-th robot to the middle point P 0

i

between the right and left wheels, and m
ic

is the mass

of the body of the i-th mobile robot; the e↵ective masses m
i11

and m
i12

of the i-th mobile

robot are given by

8

>

>

<

>

>

:

m
i11

= Iw
i

+ r2
i

(m
i

R2

i

+ I
i

)/4R2

i

,

m
i12

= r2
i

(m
i

R2

i

� I
i

)/4R2

i

(I
i

= m
ic

d2
i

+ 2m
iw

R2

i

+ Ic
i

+ 2 Im
i

, m
i

= m
ic

+ 2m
iw

),

where m
iw

is the mass of a wheel; Ic
i

, Iw
i

, and Im
i

are the moment of inertia of the body

about the vertical axis through P 0

i

, the wheel about the wheel axis, and the wheel about

the wheel diameter, respectively. The velocities of the mobile robot (⌫
i

, w
i

) and the angular

velocities of the wheels (w
L,i

, w
iR

) have the relationship

8

>

>

<

>

>

:

⌫
i

= r
i

(w
iR

+ w
iL

)/2,

w
i

= r
i

(w
iR

� w
iL

)/2R
i

.

(6.3)

118



6.1 Transformations of Mobile Robot Dynamic Models

For the design of the desired CGFC, the mobile robot’s dynamics (6.1) and (6.2) needs to

be transformed in terms of the consensus errors. For this, di↵erentiate ẋ and ẏ in (6.1) to

obtain

ẍ
i

= ⌫̇
i

cos ✓
i

� ⌫
i

w
i

sin ✓
i

and ÿ
i

= ⌫̇
i

sin ✓
i

+ ⌫
i

w
i

cos ✓
i

,

which can be rewritten in the following nonlinear dynamic model of the mobile robot:

8

>

>

<

>

>

:

q̇
i

= v
i

v̇
i

= T(✓
i

, ⌫
i

)u
i

(6.4)

where q
i

2 R2 and v
i

2 R2 are the position and velocity vectors defined as q
i

:= [x
i

, y
i

]T

and v
i

:= q̇
i

, respectively; u
i

:= [ ⌫̇
i

w
i

]T 2 R2 denotes the e↵ective control input for the

system (6.4), and T(✓
i

, ⌫
i

) 2 R2⇥2 is the transformation matrix given by

T(✓
i

, ⌫
i

) :=

2

6

4

cos ✓
i

�⌫
i

sin ✓
i

sin ✓
i

⌫
i

cos ✓
i

3

7

5

(6.5)

whose inverse is given by

T�1(✓
i

, ⌫
i

) =

2

6

4

cos ✓
i

sin ✓
i

�⌫�1

i

sin ✓
i

⌫�1

i

cos ✓
i

3

7

5

.

For the existence of the inverse T�1(✓
i

, ⌫
i

), we assume that

Assumption 6.1. There is a positive constant ⌫
min

> 0 such that

⌫
i

(t) � ⌫
min

> 0 for all i 2 N and all t � 0.

Lemma 6.1. Under Assumption 6.1, ⌫
i

(t), T(✓
i

, ⌫
i

), and T�1(✓
i

, ⌫
i

) are represented in
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terms of v
i

as

⌫
i

= kv
i

k, T(v
i

) =

"

ẋ
i

/kv
i

k �ẏ
i

ẏ
i

/kv
i

k ẋ
i

#

, and T�1(v
i

) =
1

kv
i

k

"

ẋ
i

ẏ
i

�ẏ
i

/kv
i

k ẋ
i

/kv
i

k

#

Proof. Note that ẋ = ⌫
i

cos ✓
i

, ẏ = ⌫
i

sin ✓
i

, and ⌫
i

= ẋ
i

cos ✓
i

+ ẏ
i

sin ✓
i

imply ⌫2
i

= kv
i

k2,
so we have ⌫

i

= kv
i

k under Assumption 6.1. Then, the proof is completed by substituting

⌫
i

= kv
i

k, ẋ = ⌫
i

cos ✓
i

, and ẏ = ⌫
i

sin ✓
i

into the definitions ofT(✓
i

, ⌫
i

) andT�1(✓
i

, ⌫
i

).

By Lemma 6.1 and Assumption 6.1, the transformed system (6.4) can be rewritten

as q̇
i

= v
i

and v̇
i

= T(v
i

)u
i

without explicitly using the angle orientation ✓
i

. Next, to

obtain the transformed model of the robot dynamics (6.2), di↵erentiate (6.3) with respect

to time, which yields

J
i1

⌫̇
i

= �b
i

⌫
i

+ ↵
i

w2

i

+ r
i

⌧
i⌫

J
i2

ẇ
i

= �b
i

w
i

� ↵
i

R2

i

⌫
i

w
i

+
r
i

R2

i

⌧
iw

,

where ⌧
i⌫

and ⌧
iw

are defined by

8

>

>

<

>

>

:

⌧
i⌫

:= (⌧
iR

+ ⌧
iL

)/2

⌧
iw

:= (⌧
iR

� ⌧
iL

)/2,

(6.6)

and J
i1

and J
i2

are defined by J
i1

:= m
i11

+m
i12i

and J
i2

:= m
i11

�m
i12

, respectively. By

the definitions, J
i2

and J
i2

satisfy J
i1

= Iw
i

+r2
i

I
i

/2R2

i

and J
i2

= Iw
i

+r2
i

m
i

/2, respectively.

Let ⇢
i⌫

and ⇢
iw

be defined as

8

>

>

<

>

>

:

⇢
i⌫

:= J�1

i1

(�b
i

⌫
i

+ ↵
i

w2

i

+ r
i

⌧
i⌫

)

⇢
iw

:= J�1

i2

(�b
i

w
i

�R�2

i

↵
i

⌫
i

w
i

+R�2

i

r
i

⌧
iw

).

(6.7)
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Then, we finally obtain the following complete model for each i-th the mobile robot:

Consensus model:

8

>

>

<

>

>

:

q̇
i

= v
i

v̇
i

= T(v
i

)u
i

,

(6.8)

Dynamic model:

8

>

>

<

>

>

:

⌫̇
i

= ⇢
i⌫

ẇ
i

= ⇢
iw

.

(6.9)

Notice that all of the i-th robot’s physical parameters are stuck together into ⇢
i⌫

and ⇢
iw

in (6.9). This dramatically simplifies the whole design procedure, especially the procedure

to derive the adaptation laws.

The whole design procedure in this chapter is divided into three steps that ultimately

provide the actual feedback torque inputs ⌧
iR

and ⌧
iL

of each mobile robot in a stable,

inverse optimal fashion. First, we design the inverse optimal e↵ective control input u
i

in

(6.8). Second, the feedback control inputs (⇢
i⌫

, ⇢
iw

) to (6.9) is derived using the inverse

optimal derivative-free partial backstepping. Finally, the adaptation laws are designed to

compensate the parametric uncertainties in (⇢
i⌫

, ⇢
iw

), which results in the adaptive inverse

optimal actual torque inputs ⌧
iR

and ⌧
iL

to each mobile robot for their CGFC.

6.2 Inverse Optimal Design of (⌫̇i, wi)

As the first step, we focus on the consensus model (6.8) and design the e↵ective control

u
i

= [ ⌫̇
i

w
i

]T of each i-th robot in an inverse optimal fashion. To define the desired

formation and group velocity, let d
i

= [ d
x,i

d
y,i

]T 2 R2 and v
g

= [ v
x,g

v
y,g

]T 2 R2 be

be the consensus position vector of the i-th mobile robot and the group velocity vector,

both of which has the following combined dynamics:

ḋ
i

= v
g

and v̇
g

= 0
2

. (6.10)
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Here, the relative position d
i

�d
j

defines the desired formation between the i-th and the j-

th robots, and the nonzero group velocity v
g

states the desired nonzero speed and angular

orientation of the group (here, we only consider the nonzero v
g

to hold Assumption 6.1

in the limit v
i

! v
g

). Then, di↵erentiating the formation consensus errors �
i

2 R2 and

⌘
i

2 R2 defined as

�
i

:= q
i

� d
i

and ⌘
i

:= v
i

� v
g

, (6.11)

substituting (6.8), (6.10), (6.11), and T(v
i

) = T(⌘
i

+ v
g

) yields the following formation

consensus error dynamics:
8

>

>

<

>

>

:

�̇
i

= ⌘
i

⌘̇
i

= T(⌘
i

,v
g

)u
i

,

(6.12)

where T(⌘
i

,v
g

) := T(⌘
i

+ v
g

) with slight abuse of notations. Now, we propose

u⇤
i

= T�1(⌘,v
g

)u⇤
i

, (6.13)

as an inverse optimal e↵ective control input to (6.12) for the formation and velocity con-

sensuses, where u⇤
i

2 R2 is the linear part of u
i

given by

u⇤
i

:= �K ·
X

j2Ni

a
ij

2

6

4

q
i

� q
j

� d
ij

v
i

� v
j

3

7

5

� ��1Q
v

(v
i

� v
g

). (6.14)

Here, � > 0 is a positive constant, a
ij

is the (i, j)-th element of the adjacency matrix A
of the graph G = {N , E ,A}, Q

v

2 R2⇥2 is a positive definite matrix, and K 2 R4⇥2 is the

optimal gain matrix given by K := ��1BT

0

P for the solution to the ARE:

AT

c

P +PA
c

+Q� 1

�
PB

0

BT

0

P = 0
4⇥4

. (6.15)
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where Q 2 R4⇥4 is a positive definite matrix, and the matrices A
c

2 R4⇥4 and B
0

2 R4⇥2

are defined as follows:

B
0

:=

2

6

4

0
2⇥2

I
2

3

7

5

and A
c

:= A
0

� 1

�
B

0

Q
v

BT

0

for A
0

:=

2

6

4

0
2⇥2

I
2

0
2⇥2

0
2⇥2

3

7

5

.

To derive the global expression, define the (global) vectors of the formation consensus

errors, and the e↵ective control inputs as

� := col{�
1

, �
2

, · · · , �
N

}, ⌘ := col{⌘
1

,⌘
2

, · · · ,⌘
N

}, u := col{u
1

,u
2

, · · · ,u
N

},

e
i

:= col{�
i

,⌘
i

}, e := col{e
1

, e
2

, · · · , e
N

},

and notice that

1. the substitution of (6.13) into u
i

and the use of A
0

and B
0

yields the e
i

-dynamics

expression of (6.12) as ė
i

= A
0

e
i

+B
0

u⇤
i

;

2. using the definition of e
i

and the properties “l
ij

= �a
ij

and l
ii

=
P

j2Ni
a
ij

” of the

Laplacian matrix L, the linear policy u⇤
i

given in (6.14) can be compactly rewritten

as µ⇤
i

= �KPN

j=1

l
ij

e
j

� ��1Q
v

BT

0

e
i

.

Then, using the Kronecker product and its properties, we obtain the global expression of

the form
8

>

>

<

>

>

:

ė = A⌦
0

e+B⌦
0

u⇤,

µ⇤ = �⇥(L ⌦K ) + ��1(I
N

⌦Q
v

BT

0

)
⇤

e,

(6.16)

where A⌦
0

:= I
N

⌦A
0

, B⌦
0

:= I
N

⌦B
0

, and u⇤ := col{u⇤
1

,u⇤
2

, · · · ,u⇤
N

}.

Lemma 6.2. The followings hold for the matrices ⇧, ⇥, and � defined as

8

>

>

>

<

>

>

>

:

⇧ := L⌦P+ I
N

⌦B
0

Q
v

BT

0

,

⇥ := � + (L2 � L)⌦PB
0

BT

0

P/�,

� := (L ⌦Q) + ��1(I
N

⌦B
0

Q2

v

BT

0

).

123



1) (A⌦
0

)T⇧+⇧A⌦
0

+⇥ �⇧B⌦
0

(B⌦
0

)T⇧/� = 0
4⇥4

; (6.17)

2) u⇤ = ���1(B⌦
0

)T⇧e; (6.18)

3) ker⇧ = ker� = ker(L⌦ I
4

) \ ker(I
N

⌦B
0

BT

0

).

Proof. The proof of (6.17) can be done using the Kronecker product properties and the

definitions of the matrices as follows:

(A⌦
0

)T⇧+⇧A⌦
0

+⇥ �⇧B⌦
0

(B⌦
0

)T⇧/�

= L⌦ (AT

0

P +PA
0

) + I
N

⌦ (AT

0

B
0

Q
v

BT

0

+B
0

Q
v

BT

0

A
0

| {z }

=04⇥4

) +⇥ �⇧(I
N

⌦B
0

BT

0

)⇧/�

= L⌦ (AT

c

P +PA
c

) +⇥�
✓

I
N

⌦ B
0

Q 2

v

BT

0

�

◆

�
✓

L2 ⌦ PB
0

BT

0

P

�

◆

= L⌦ (AT

c

P +PA
c

+Q�PB
0

BT

0

P/�
| {z }

=04⇥4by the ARE (6.15)

)

= 0
4⇥4

.

Similarly, from K = ��1BT

0

P, one can also show that

��1(B⌦
0

)T⇧ = ��1

⇥

(L⌦BT

0

P) + (I
N

⌦BT

0

B
0

Q
v

BT

0

)
⇤

= (L ⌦K ) + ��1(I
N

⌦Q
v

BT

0

),

which proves (6.18). On the other hand, the definition of � and the Kroncker algebra

imply

⇧x = (I
N

⌦P)(L⌦ I
4

)x+ (I
N

⌦B
0

Q
v

BT

0

)x, 8x 2 R4N . (6.19)

Hence, ⇧x = 0
4N

always implies x 2 ker(L⌦ I
4

) and x 2 ker(I
N

⌦B
0

Q
v

BT

0

). Moreover,

ker(B
0

Qk

v

BT

0

) = ker(B
0

BT

0

) holds for any Q
v

� 0
2⇥2

, so we have

x 2 ker⇧ =) x 2 ker(L⌦ I
4

) \ ker(I
N

⌦B
0

BT

0

),

whose converse is also true by (6.19) and ker(B
0

Qk

v

BT

0

) = ker(B
0

BT

0

). Since

�x = (I
N

⌦Q)(L⌦ I
4

)x+ ��1(I
N

⌦B
0

Q2

v

BT

0

)x,

one can also show ker� = ker(L⌦ I
4

) \ ker(I
N

⌦B
0

BT

0

), which completes the proof.

124



Let � (v
i

) 2 R2⇥2 be defined as

� (v
i

) := � · diag{1, kv
i

k2}. (6.20)

Then, it implicitly depends on both ⌘
i

and v
g

by v
i

= ⌘
i

+ v
g

. Define the global vector

v 2 R2N and the global matrices B⌦
v

2 R4N⇥2N and �⌦
v

2 R2N⇥2N as

8

>

>

<

>

>

:

v := col{v
1

,v
2

, · · · ,v
N

},

B⌦
v

:= I
N

⌦ �B
0

T(v
i

)
 

N

i=1

and �⌦
v

:= I
N

⌦ ��(v
i

)
 

N

i=1

,

all of which depends on ⌘ and v
g

by the rule v
i

= ⌘
i

+ v
g

.

Lemma 6.3. The formation consensus error dynamics (6.12) can be represented in a

global form

ė = A⌦
0

e+B⌦
v

u. (6.21)

Moreover, the following equalities hold for u, B⌦
v

, and �⌦
v

:

(A⌦
0

)T⇧+⇧A⌦
0

+⇥�⇧B⌦
v

�

�⌦
v

��1

�

B⌦
v

�

T

⇧ = 0
4⇥4

, (6.22)

u⇤ =
�

�⌦
v

��1

�

B⌦
v

�

T

⇧e. (6.23)

where u⇤ := col{u⇤
1

,u⇤
2

, · · · ,u⇤
N

}.

Proof. First, note that (6.12) can be expressed as ė
i

= A
0

e
i

+B
0

T(v
i

)u
i

.Using the Khatri-

Rao product and its property in Proposition A.6 in Appeidix A, this can be rewritten in

terms of the global formation consensus error e as

ė = (I
N

⌦A
0

)e+
�

I
N

⌦ {B
0

T(v
i

)}N
i=1

�

u = A⌦
0

e+B⌦
v

u

which proves (6.21). Moreover, (6.13) and the use of the Khatri-Rao product yield u⇤ =
�

I
N

⌦�T(v
i

)
 

N

i=1

�

u⇤. Thus, by the substitution of (6.18) in Lemma 6.2 and the operations
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of the Khatri-Rao product in Propositions A.6 and A.7 in Appendix A, one obtains

u⇤ =
⇣

I
N

⌦ �T�1(v
i

)
 

N

i=1

⌘⇣

I
N

⌦ ��1BT

0

⌘

⇧e

=

✓

I
N

⌦
n

��1T�1(v
i

)BT

0

o

N

i=1

◆

⇧e

=

✓

I
N

⌦
n

��1(v
i

)TT (v
i

)BT

0

o

N

i=1

◆

⇧e

=
⇣

I
N

⌦ ��(v
i

)
 

N

i=1

⌘�1

⇣

I
N

⌦ �B
0

T(v
i

)
 

N

i=1

⌘

T

⇧e

=
�

�⌦
v

��1

�

B⌦
v

�

T

⇧e.

In the third equality, the matrix equality T(v
i

)��1(v
i

)TT (v
i

) = ��1I
2

is substituted

which can be easily verified using the definitions (6.5) and (6.20). This proves (6.23).

For the proof of (6.22), note that T��1TT = ��1I
2

and the applications of Proposi-

tions A.6 and A.7 in Appendix A yield

��1B⌦
0

(B⌦
0

)T = I
N

⌦
n

B
0

⇣

T(v
i

)��1(v
i

)TT (v
i

)
⌘

BT

0

o

N

i=1

=
⇣

I
N

⌦ �B
0

T(v
i

)
 

N

i=1

⌘⇣

�⌦
v

⌘�1

⇣

I
N

⌦ �B
0

T(v
i

)
 

N

i=1

⌘

T

= B⌦
v

�

�⌦
v

��1

�

B⌦
v

�

T

.

Therefore, (6.22) can be obtained by the substitution of this into the ARE (6.17) in

Lemma 6.2. This completes the proof.

Lemma 6.4. Suppose the algebraic connectivity �
2

(L) of the undirected graph G = {N , E ,A}
satisfies �

2

(L) � 1. Then, 0
4N⇥4N

� � � ⇥.

Proof. First, note that since the graph is undirected, its Laplacian L is positive semi-

definite. So, one has � ⌫ 0
4N⇥4N

. Next, by the condition �
2

(L) � 1, we have �
j

(L) � 1

for all j = 2, 3, · · · , N , and thus the matrix inequality L2 � L ⌫ 0
N⇥N

holds. From this,

one has (L2 � L) ⌦ PB
0

BT

0

P/� ⌫ 0
4N⇥4N

, and the proof is completed by the definition

of ⇥ in Lemma 6.2.

Now, the following theorem is obtained that provides a condition on the graph for the

inverse optimal formation and velocity consensuses.

Theorem 6.1. Consider the group of mobile robots with the formation consensus error

dynamics (6.12) whose communication topology is described by a simple undirected graph
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G = {N , E ,A}. Suppose that each e↵ective control input u
i

in the dynamics (6.12) is given

by (6.13) and (6.14). If the Laplacian L of the graph G satisfies

�
2

(L) � 1, (6.24)

then the followings holds under Assumption 6.1.

1. (Formation and Velocity Consensus) The mobile robot agents achieve the for-

mation and velocity consensuses

lim
⌧!1

kq
i

(⌧)� q
j

(⌧)� d
ij

k = 0 and lim
⌧!1

kv
i

(⌧)� v
g

k = 0 (6.25)

exponentially. That is, there exist � > 0 and  > 0 such that for ⌧ � t,

d(e(⌧), S)  �e�(⌧�t)d(e(t), S),

where the consensuses are achieved on the subspace S given by S = ker⇧.

2. (Inverse Optimality) The feedback control inputs {u⇤
i

}N
i=1

given in (6.13) and

(6.14) are the inverse optimal solution that cooperatively minimize the performance

index J(e(0),u(·)) given by

J(e(t),u(·)) =
Z 1

t

✓

eT⇥e+
N

X

i=1

uT

i

�(v
i

)u
i

◆

d⌧. (6.26)

Proof. Substituting (6.18) in Lemma 6.2 into the linear dynamics (6.16), one obtains

ė =
�

A⌦
0

� ��1B⌦
0

(B⌦
0

)T⇧
�

e, (6.27)

where the matrix ⇧ is positive semi-definite since so is the Laplacian L of the undirected

graph G (see Lemma 6.2). Now, consider V (e) := eT⇧e as the Lyapunov function candi-

date. Di↵erentiating V with respect to the linear closed-loop system (6.27) and substituting

(6.17) yields

V̇ (e) = eT
h

(A⌦
0

)T⇧+⇧A⌦
0

� 2⇧B⌦
0

(B⌦
0

)T⇧/�
i

e

= �eT
h

⇥+ ⇧B⌦
0

(B⌦
0

)T⇧/�
i

e.
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Then, by Lemma 6.4, V̇ satisfies

V̇ (e)  �eT ��+⇧B⌦
0

(B⌦
0

)T⇧/�
�

e  �eT�e.

On the other hand, Lemma 2.5 implies there are positive constants ↵, ↵̄, �, and �̄ > 0

such that

↵ · d2
2

(e, ker�)  eT�e  ↵̄ · d2
2

(e, ker�),

� · d2
2

(e, ker⇧)  V (e)  �̄ · d2
2

(e, ker⇧).

Hence, by Theorem 3.1 and the property “ker� = ker⇧” in Lemma 6.2, the policy given

by (6.13) and (6.14) exponentially stabilizes the consensus error dynamics (6.12) to the

subspace S = ker⇧. Next, consider the orthogonal decomposition

e(⌧) = e
r

(⌧) + e
n

(⌧),

where e
r

belongs to the row-space of ⇧ and e
n

2 ker⇧. Then, the exponential sta-

bility “d(e(⌧), S)  �e�(⌧�t)d(e(t), S)” implies the limit lim
⌧!1 e

r

(⌧) = 0
4N

, and by

Lemma 6.2,

e
n

(⌧) 2 ker(L⌦ I
4

) \ ker(I
N

⌦B
0

BT

0

) 8⌧ � 0,

which implies that e
n

(⌧) is represented as

e
n

(⌧) = z
N

⌦ col{�
c

(⌧),0
2

}

for some z
N

2 kerL and �
c

(⌧) 2 R2. Since the condition (6.24) implies that 1
N

2 RN

is the unique eigenvector for the zero eigenvalue “�
1

(L) = 0”, we have z
N

= 1
N

. Thus,

by the definitions of e and e
n

2 ker⇧ and the convergence lim
⌧!1 e

r

(⌧) = 0
4N

, every

formation consensus error �
i

(⌧) converges to a common function �
c

(⌧) as ⌧ !1 and

lim
⌧!1

⌘
1

(⌧) = lim
⌧!1

⌘
2

(⌧) = · · · = lim
⌧!1

⌘
N

(⌧) = 0
2

.

These obviously imply that for all i, j 2 N,

lim
⌧!1

(�
i

(⌧)� �
j

(⌧)) = lim
⌧!1

(q
i

(⌧)� q
j

(⌧)� d
ij

) = 0
2

,

lim
⌧!1

v
i

(⌧) = v
g

.
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Therefore, the formation and velocity consensuses (6.25) are achieved under the polices

{u⇤
i

}N
i=1

given by (6.13) and (6.14).

To show the inverse optimality, define the performance index J (e(t),u(·)) as

J (e(t),u(·)) =
Z 1

t

✓

eT⇥e+ uT�⌦
v

u

◆

d⌧.

Then, one can see that (6.22) in Lemma 6.3 is actually the matrix form of the nonlinear

HJB equation with respect to J (e(t),u(·)) above and the system (6.21) in Lemma 6.3;

u⇤ = ���⌦
v

��1

�

B⌦
v

�

T

⇧e is the corresponding optimal policy. Therefore, by Lemma 6.3

and the above discussions, {u⇤
i

}N
i=1

given by (6.23) is the inverse optimal formation con-

sensus policies that cooperatively minimize J (e(0),u(·)). Moreover, the definition of �⌦
v

and the operation of the Khatri-Rao product in Proposition A.6 in Appendix A yield

J (e(t),u(·)) = J(e(t),u(·)) since

uT�⌦
v

u = uT

⇣

I
N

⌦��(v
i

)
 

N

i=1

⌘

u =
N

X

i=1

u
i

�(v
i

)u
i

,

which completes the proof.

6.3 Inverse Optimal Cooperative Graphical Formation Con-

trol via Input-Dynamics Extension

Based on the the inverse optimal input-dynamics extension technique shown in Section 3.2

and the optimal policy u⇤ given by (6.13) and (6.14) in the previous section, this section

presents an inverse optimal design method of the control inputs (⇢
i⌫

, ⇢
iw

) of the dynamic

model (6.9). The first step of this is to decompose T(v
i

) column-wisely as

T(v
i

) =
h

t
1

(v
i

) t
2

(v
i

)
i

,

where t
1

(v
i

) = [ cos ✓
i

sin ✓
i

]T and t
2

(v
i

) = ⌫
i

[� sin ✓
i

cos ✓
i

]T . Under Assumption 6.1,

they are represented in terms of v
i

as t
1

(v
i

) = kv
i

k�1[ ẋ
i

ẏ
i

]T and t
2

(v
i

) = [�ẏ
i

ẋ
i

]T .

Next, note that u can be represented as the Khatri-Rao product “u = 1
N

⌦ {u
i

}N
i=1

”

by its definition. Then, substituting u
i

= [ ⌫̇
i

w
i

]T and using the definition of B⌦
v

and the
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properties of the Khatri-Rao product in Appendix A yields the following formula:

B⌦
v

u =
⇣

I
N

⌦ �B
0

T(v
i

)
 

N

i=1

⌘⇣

1
N

⌦ �u
i

 

N

i=1

⌘

=
⇣

1
N

⌦ �B
0

T(v
i

)u
i

 

N

i=1

⌘

=
�

1
N

⌦ �B
0

t
1

(v
i

)⌫̇
i

 

N

i=1

�

+
�

1
N

⌦ �B
0

t
2

(v
i

)w
i

 

N

i=1

�

= B⌦
v1

⌫̇ +B⌦
v2

w,

where B⌦
vk

2 R(4N)⇥(2N) (k = 1, 2) and ⌫̇, w 2 RN are defined as

B⌦
v1

:= I
N

⌦ �B
0

t
1

(v
i

)
 

N

i=1

, ⌫̇ := diag{⌫
1

, ⌫
2

. · · · , ⌫
N

},

B⌦
v2

:= I
N

⌦ �B
0

t
2

(v
i

)
 

N

i=1

, w := diag{w
1

, w
2

, · · · , w
N

}.

Hence, the consensus error dynamics (6.21) can be rewritten in terms of ⌫̇ and w as

ė = A⌦
0

e+B⌦
v1

⌫̇ +B⌦
v2

w. (6.28)

Similarly, since �⌦
v

is diagonal, its definition (6.20) allows the following decomposition

of the optimal policy u⇤ =
�

�⌦
v

��1

�

B⌦
v2

�

T

⇧e (see Lemma 6.3 for this formula):

u⇤ = ⌫̇⇤ +w⇤

for ⌫̇⇤ 2 RN and w⇤ 2 RN defined by

8

>

>

<

>

>

:

⌫̇⇤ := 1

�

�

B⌦
v1

�

T

⇧e

w⇤ := 1

�

· (D2

v

)�1

�

B⌦
v2

�

T

⇧e,

(6.29)

where D
v

:= diag{kv
1

k
2

, kv
2

k
2

, · · · , kv
N

k
2

}. Moreover, the HJB matrix equation (6.22)

can be also decomposed as

(A⌦
s

)T⇧+⇧A⌦
s

+⇥+
1

�
⇧ (B⌦

v1

)
�

B⌦
v1

�

T

⇧� 1

�
⇧ (B⌦

v2

)D�2

v

�

B⌦
v2

�

T

⇧ = 0
4⇥4

,
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where A⌦
s

:= A⌦
0

� ��1B⌦
v1

�

B⌦
v1

�

T

⇧.

Now, consider the following (⌫̇,w)-dynamics obtained by combining the dynamic

model (6.9) for all i 2 N :
8

>

>

<

>

>

:

⌫̇ = ⇢
⌫

ẇ = ⇢
w

,

where ⇢
⌫

:= col{⇢
1⌫

, ⇢
2⌫

, · · · , ⇢
N⌫

} and ⇢
w

:= col{⇢
1w

, ⇢
2w

, · · · , ⇢
Nw

}. From this and

(6.28), one can see that the optimal policy ⌫̇⇤ given in (6.29) can be directly applied by

letting ⇢
⌫

= ⌫̇⇤, but the other optimal one w⇤ in (6.29) does not due to the presence of

the integrator ẇ = ⇢
w

. For this reason, it is desirable to set ⌫̇ as the static control inputs

and w as the dynamic controls (see Section 3.2 for these terminologies and the reiview of

the inverse optimal input-dynamics extension technique). Hence, substituting ⌫̇⇤ given in

(6.29) into the ⌫-dynamics “⌫̇ = ⇢
⌫

” by letting ⇢
⌫

= ⌫⇤ and rearranging the equations,

we finally obtain the following partially-closed-loop dynamics:

8

>

>

<

>

>

:

ė = A⌦
s

e+B⌦
v2

w

ẇ = ⇢
w

,

(6.30)

which is the counterpart of the extended dynamics (3.8). Let ē
s

:= col{e,w} and define

Ā⌦
s

and B̄⌦
0

as

Ā⌦
s

:=

"

A⌦
s

B⌦
v2

0
N⇥4N

0
N⇥N

#

and B̄⌦
0

:=



0
4N⇥N

I
N

�

.

Then, the system (6.30) can be rewritten as

˙̄e
s

= Ā⌦
s

ē
s

+ B̄⌦
0

⇢
w

(6.31)

Now, the application of Theorem 3.3 to the system (6.31) (or (6.30)) yields the following

theorem that states the semi-global asymptotic stability and inverse optimality.

Theorem 6.2. Supose the graph G = {N , E ,A} is simple, undirected, and connected; let
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the functions Q⇤
d

(v;�) and S̄
d

(ē
s

;�) be defined as

Q⇤
d

(v;�) = ēT
s

Q
d

(v;�)ē
s

and S̄
d

(ē
s

;�) = ēT
s

S̄
d

(ē
s

;�)ē
s

with the matrices Q
d

(v;�) and S̄
d

(ē
s

;�) given by

Q
d

(v;�) :=

"

�⇧ ?

(B⌦
v2

)T⇧ �D2

v

#

S̄
d

(ē
s

;�) :=

"

�⇥� (A⌦
s

)T⌅T⇧�⇧⌅A⌦
s

?

��⇧⌅T + (B⌦
v2

)T⇧
�

A⌦
s

⌃(ē
s

;�)

#

,

where

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

⌅(v,w) := rB⌦
v2

(x)w ⌘PN

i=1

w
i

I
N

⌦ ��
ij

·B
0

r
e

t
2

(v
j

)
 

N

j=1

(�
ij

: the Kronecker delta function, i.e., �
ij

= 1 for i = j and �
ij

= 0 otherwise);

⌃(ē
s

;�) := ��D2

v

� 2(B⌦
v2

)T⇧B⌦
v2

�⌥(ē
s

);

⌥(ē
s

) := 2� diag{vT

1

[A⌦
s

e+B⌦
v2

w]
1

, · · · ,vT

N

[A⌦
s

e+B⌦
v2

w]
N

}
([z]

k

: yk 2 R2 in the vector z = col{x1,y1, · · ·xN ,yN} 2 R4N for xi, yi 2 R2).

Let the control ⇢
w

in the mobile robot’s partially-closed-loop dynamics (6.30) be given by

⇢
w

= ⇢⇤
w

, where ⇢⇤
w

is a policy of the form

⇢⇤
w

(ē
s

;�) = � · (w⇤(x)�w) (� > 0). (6.32)

Then, under Assumptions 6.1, for any initial condition ē
s

2 Rn+md, there exists � > 0

such that for all � � �,

1. Q⇤
d

(v;�) and S̄
d

(ē
s

;�) given in the theorem are positive semi-definite and satisfies

Assumption 3.3;

2. the policy ⇢⇤
w

(ē
s

;�) asymptotically stabilizes the system (6.30) to the extended sub-

space S
e

⇢ R5N given by

S
e

:=
�

ē
s

= (e,w) 2 R5N : e 2 ker⇧ and w ⌘ w⇤ 

3. ⇢⇤
w

(ē
s

;�) is inverse optimal with respect to J(ē
s

(t),v(·)) given by

J(ē
s

(t), ẇ(·)) :=
Z 1

0

⇣

S̄
d

(ē
s

;�) + �� k⌫̇⇤(e)k2
2

+ ��1� · ẇTD2

v

ẇ
⌘

d⌧,

and Q⇤
d

(ē
s

;�) = ēT
s

Q
d

(v;�)ē
s

is its corresponding optimal value function.
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Proof. The proof will be done by showing the existence of the lower bounds on � that

guarantees Assumption 3.3 and then applying Theorem 3.3 with radially unbounded value

function Q⇤
d

(ē
s

;�) for su�ciently large � > 0. For a sketch of the proof, see Appendix D.5.

By the standard optimal control theory, Q⇤
d

(ē
s

;�) and S̄
d

(ē
s

;�) in Theorem 6.2 satisfy

the HJB equation (rQ⇤
d

)T Ā⌦
s

ē
s

� �

4

(rQ⇤
d

)T B̄⌦
0

D�2

v

(B̄⌦
0

)TrQ⇤
d

+ S̄
d

+�� k⌫̇⇤k2
2

= 0, which

can be rearranged using ⇢⇤
w

= ��

2

D�2

v

(B̄⌦
0

)TrQ⇤
d

and the notation ⇢⇤
⌫

:= ⌫̇⇤ as

(rQ⇤
d

)T f̄⌦
c

+ S̄
d

+ �� k⇢⇤
⌫

k2
2

+ ��1 (⇢⇤
w

)TD�2

v

⇢⇤
w

= 0, (6.33)

where f̄⌦
c

:= Ā⌦
s

ē
s

+ B̄⌦
0

⇢⇤
w

is the nonlinear function of the closed-loop dynamics ˙̄e
s

=

f̄⌦
c

(ē
s

). Here, the closed-loop function f̄⌦
c

(ē
s

) can be represented as

f̄⌦
c

(ē
s

) = Ā⌦
0

ē
s

+ B̄⌦
v1

⇢⇤
⌫

+ B̄⌦
0

⇢⇤
w

, (6.34)

where B̄⌦
v1

:=

"

B⌦
v1

0
N⇥N

#

. Similarly, the ē
s

-dynamics (6.31) can be expressed in terms of

⇢
⌫

and ⇢
w

˙̄e
s

= Ā⌦
0

ē
s

+ B̄⌦
v1

⇢
⌫

+ B̄⌦
0

⇢
w

. (6.35)

These equations (6.33) through (6.35) play a key role in deriving the adaptation laws in

the next section.

6.4 Adaptive Inverse Optimal Graphical Formation Control

In the previous two sections, the inverse optimal policy for CGFC is proposed under the

assumption that the mobile robots’ parameters are perfectly known. The resulting inverse

optimal policy (⇢⇤
⌫

,⇢⇤
w

) are given by

⇢⇤
⌫

= ⌫̇⇤(x), ⇢⇤
w

= �w⇤(x)� �w, (6.36)
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where ⌫̇⇤ and w⇤ are given by (6.29) and (6.29), respectively. Define ⌧
⌫

and ⌧
w

in RN as

⌧
⌫

:= col{⌧
1⌫

, ⌧
2⌫

, · · · , ⌧
N⌫

} and ⌧
w

:= col{⌧
1w

, ⌧
2w

, · · · , ⌧
Nw

}

and rewrite the input terms (6.7) in an aggregated form:

8

>

>

<

>

>

:

H
1

⇢
⌫

= �D
⌫

c
1

�D2

w

z
1

+ ⌧
⌫

H
2

⇢
w

= �D
w

c
2

�D
⌫

D
w

z
2

+ ⌧
w

(6.37)

where D
⌫

:= diag{⌫
1

, · · · , ⌫
N

}, D
w

:= diag{w
1

, · · · , w
N

}, and
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

z
k

:= [ z
1k

z
2k

· · · z
Nk

]T with z
ik

= (�1)k↵
i

/r
i

c
k

:= [ c
1k

c
2k

· · · c
Nk

]T with c
ik

= b
i

R
2(k�1)

i

/r
i

H
k

:= diag{h
1k

, h
2k

, · · · , h
Nk

} with h
ik

= J
ik

R
2(k�1)

i

/r
i

.

we also define h
k

(k = 1, 2) as h
k

:= [h
1k

h
2k

· · · h
Nk

]T for notational convenience. If

the parameters in c
k

, z
k

, and h
k

are perfectly known, then the control law given by

8

>

>

<

>

>

:

⌧ ⇤
⌫

= D
⌫

c
1

+D2

w

z
1

+H
1

⇢⇤
⌫

⌧ ⇤
w

= D
w

c
2

+D
⌫

D
w

z
2

+H
2

⇢⇤
w

achieves the inverse optimal asymptotic stabilization to the subspace S
e

as shown in the

previous section. However, such an inverse optimal control law cannot be generated ex-

actly if there are parametric uncertainties in c
k

, z
k

, and h
k

. In this section, we derive

the adaptation laws to cancel out such uncertainties to improve the performance of the

controlled system.
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6.4.1 Derivations of Stabilizing Adaptation Laws

In what follows, let ĉ
k

, ẑ
k

, and ĥ
k

(k = 1, 2) be the estimated matrices of c
k

, z
k

, and h
k

,

respectively, and consider the adaptive control inputs ⌧̂
⌫

and ⌧̂
w

given by

8

>

>

<

>

>

:

⌧̂
⌫

= D
⌫

ĉ
1

+D2

w

ẑ
1

+ Ĥ
1

⇢⇤
⌫

⌧̂
w

= D
w

ĉ
2

+D
⌫

D
w

ẑ
2

+ Ĥ
2

⇢⇤
w

,

(6.38)

where Ĥ
k

:= diag{ĥ
k1

, · · · , ĥ
kN

} (k = 1, 2) for the elements ĥ
ki

of ĥ
k

(i 2 N ). Define the

diagonal matrices D
⇢

⇤
⌫
and D

⇢

⇤
w
as

D
⇢

⇤
⌫
:= diag{⇢⇤

⌫1

, · · · , ⇢⇤
⌫N

} and D
⇢

⇤
w
:= diag{⇢⇤

w1

, · · · , ⇢⇤
wN

}.

Then, they satisfy
8

>

>

<

>

>

:

H
1

⇢⇤
⌫

= D
⇢

⇤
⌫
h
1

, Ĥ
1

⇢⇤
⌫

= D
⇢

⇤
⌫
ĥ
1

,

H
2

⇢⇤
w

= D
⇢

⇤
w
h
2

, Ĥ
2

⇢⇤
w

= D
⇢

⇤
w
ĥ
2

.

Now, substituting ⌧
⌫

= ⌧̂
⌫

and ⌧
w

= ⌧̂
w

into (6.37) and rearranging the equation using

the above properties of D
⇢

⇤
⌫
and D

⇢

⇤
w
yields

8

>

>

<

>

>

:

⇢
⌫

= ⇢⇤
⌫

+H�1

1

⌧̃
⌫

⇢
w

= ⇢⇤
w

+H�1

2

⌧̃
w

,

where ⌧̃
⌫

:= ⌧̂
⌫

�⌧ ⇤
⌫

and ⌧̃
w

:= ⌧̂
w

�⌧ ⇤
w

are the control input errors and can be represented

in terms of the parametric errors c̃
k

:= ĉ
k

� c
k

, z̃
k

:= ẑ
k

� z
k

, and h̃
k

:= ĥ
k

� h
k

as

8

>

>

<

>

>

:

⌧̃
⌫

= D
⌫

c̃
1

+D2

w

z̃
1

+D
⇢

⇤
⌫
h̃
1

⌧̃
w

= D
w

c̃
2

+D
⌫

D
w

z̃
2

+D
⇢

⇤
w
h̃
2

.

(6.39)
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Now, substituting ⇢
⌫

= ⇢⇤
⌫

+H�1

1

⌧̃
⌫

and ⇢
w

= ⇢⇤
w

+H�1

2

⌧̃
w

into (6.35) and using (6.34),

we finally obtain the closed-loop dynamics

˙̄e
s

= f̄⌦
c

(ē
s

) + B̄⌦
v1

H�1

1

⌧̃
⌫

+ B̄⌦
0

H�1

2

⌧̃
w

. (6.40)

In the next theorem, the adaptation laws of the parameters in the torque input errors

(⌧̃
⌫

, ⌧̃
w

) are given from the Lyapunov analysis. For the statement, define the parameter

error vector p 2 R6N as p := col{c̃
1

, c̃
2

, h̃
1

, h̃
2

, z̃
1

, z̃
2

}.

Theorem 6.3. Suppose the graph G = {N , E ,A} is simple, undirected, and connected.

Let the torque control (⌧
⌫

, ⌧
w

) be given by ⌧
⌫

= ⌧̂
⌫

and ⌧
w

= ⌧̂
w

for (⌧̂
⌫

, ⌧̂
w

) given in

(6.38), with the adaptation laws

8

<

:

˙̂c
1

= �G
11

D
⌫

�
1

, ˙̂z
1

= �G
12

D2

w

�
1

,
˙̂h
1

= �G
13

D
⇢

⇤
⌫
�
1

,

˙̂c
2

= �G
21

D
w

�
2

, ˙̂z
2

= �G
22

D
⌫w

�
2

, ˙̂h
2

= �G
23

D
⇢

⇤
w
�
2

,
(6.41)

where G
kj

’s are diagonal positive gain matrices defined as G
kj

:= diag{g(1)
kj

, g
(2)

kj

, · · · , g(N)

kj

}
with each adaptation gain g

(i)

kj

> 0 (i 2 N ), and �
k

(ē
s

) (k = 1, 2) are vector-valued func-

tions defined as

�
1

(ē
s

) :=
1

2
(B⌦

v1

)Tr
e

Q⇤
d

(ē
s

;�) and �
2

(ē
s

) :=
1

2
r

w

Q⇤
d

(ē
s

;�).

Then, under Assumptions 6.1, the adaptive policy (⌧̂
⌫

, ⌧̂
w

) stabilizes the adaptive system

(6.40) and (6.41) with respect to the extended adaptive subspace Sa
e

⇢ R11N defined as

Sa
e

:=
�

(e,w,p) 2 R(4+1+6)N : e 2 ker⇧, w ⌘ 0, and p = 0
6N

 

. (6.42)

Moreover, for all i 2 N , the consensus kq
i

(⌧)� q
j

(⌧)� d
ij

k ! 0, kv
i

(⌧)� v
g

k ! 0, and

w
i

(⌧)! 0, and the parameter convergence ĉ
i1

(⌧)! c
i1

are achieved in the limit ⌧ !1.

Proof. For the proof, consider the Lyapunov function V (ē
s

,p;�) given by

V (ē
s

,p;�) =
1

2
Q⇤

d

(ē
s

;�) +
1

2

2

X

k=1

⇣

c̃T
k

H̄�1

k1

c̃
k

+ z̃T
k

H̄�1

k2

z̃
k

+ h̃T

k

H̄�1

k3

h̃
k

⌘

,

where � > 0 is su�ciently large to guarantee both Q⇤
d

and S̄
d

given in Theorem 6.2 are

positive semi-definite and satisfy Assumption 3.3; H̄
kj

(k = 1, 2 and j = 1, 2, 3) are defined
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as H̄
kj

:= G1/2

kj

H
k

G1/2

kj

. Since both G
kj

and H
k

are diagonal positive definite, H̄
kj

can

be expressed as

H̄
kj

= H
k

G
kj

= G
kj

H
k

= G1/2

kj

H
k

G1/2

kj

. (6.43)

First, note that the time-derivative of Q⇤
d

(ē
s

;�) along the trajectory generated by

(6.40) satisfies

1

2
Q̇⇤

d

(ē
s

;�) =
1

2
rQ⇤T

d

(ē
s

;�) · �f̄⌦
c

(ē
s

) + B̄⌦
v1

H�1

1

⌧̃
⌫

+ B̄⌦
0

H�1

2

⌧̃
w

�

� 1

2
S̄
d

(ē
s

;�) +
1

2
rQ⇤T

d

(ē
s

;�) · B̄⌦
v1

H�1

1

⌧̃
⌫

+
1

2
rQ⇤T

d

(ē
s

;�) · B̄⌦
0

H�1

2

⌧̃
w

=� 1

2
S̄
d

(ē
s

;�) +
1

2
r

e

Q⇤T
d

(ē
s

;�)B⌦
v1

H�1

1

⌧̃
⌫

+
1

2
r

w

Q⇤T
d

(ē
s

;�)H�1

2

⌧̃
w

,

where the HJB equation (6.33) is substituted. using the vector-valued functions �
k

(ē
s

)

(k = 1, 2) defined in this theorem, the result can be compactly written as

1

2
Q̇⇤

d

(ē
s

;�)  �1

2
S̄
d

(ē
s

;�) + �T

1

H�1

1

⌧̃
⌫

+ �T

2

H�1

2

⌧̃
w

. (6.44)

Next, we di↵erentiate V (ē
s

,p;�) with respect to time and substitute (6.39), (6.43),

and (6.44) as follows:

V̇ (ē
s

,p;�) =Q̇⇤
d

(ē
s

;�) +
2

X

k=1

⇣

˙̂cTk H̄
�1

k1

c̃
k

+ ˙̂zTk H̄
�1

k2

z̃
k

+ ˙̂hT
k H̄

�1

k3

h̃
k

⌘

� 1

2
S̄
d

(ē
s

;�) +
2

X

k=1

·
⇣

˙̂cTk G
�1

k1

H�1

k

c̃
k

+ ˙̂zTk G
�1

k1

H�1

k

z̃
k

+ ˙̂hT
k G

�1

k1

H�1

k

h̃
k

⌘

+ �T

1

H�1

1

⇣

D
⌫

c̃
1

+D2

w

z̃
1

+D
⇢

⇤
⌫
h̃
1

⌘

+ �T

2

H�1

2

⇣

D
w

c̃
2

+D
⌫

D
w

z̃
2

+D
⇢

⇤
w
h̃
2

⌘

.

Since D
⇢

⇤
⌫
, D

⇢

⇤
w
, D

⌫

, D
w

, H
k

(k = 1, 2) are all diagonal positive definite, they and their

inverses are all commutable, which results in

V̇ (ē
s

,p;�)

 �1

2
S̄
d

(ē
s

;�)

+
�

D
⌫

�
1

+G�1

11

˙̂c
1

�

T

H�1

1

c̃
1

+
�

D2

w

�
1

+G�1

12

˙̂z
1

�

T

H�1

1

z̃
1

+
�

D
⇢

⇤
⌫
�
1

+G�1

13

˙̂h
1

�

T

H�1

1

h̃
1

+
�

D
w

�
2

+G�1

21

˙̂c
2

�

T

H�1

2

c̃
2

+
�

D
⌫w

�
2

+G�1

22

˙̂z
2

�

T

H�1

2

z̃
2

+
�

D
⇢

⇤
w
�
2

+G�1

23

˙̂h
2

�

T

H�1

2

h̃
2

.

where D
⌫w

:= D
⌫

D
w

. Therefore, we choose the adaptation laws as (6.41), which results

in V̇ (ē
s

,p;�)  �1

2

S̄
d

(ē
s

;�). Since S̄
d

(ē
s

;�) satisfies Assumption 3.3 for su�ciently large
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� > 0 by Theorem 6.2, we have

V̇ (ē
s

,p;�)  �1

2
S̄
d

(ē
s

;�)  �1

2
↵
s

(d(ē
s

; S
e

)) � 0, (6.45)

where S
e

is the subspace defined in Theorem 6.2, and the application of Theorem 3.1 proves

that (⌧̂
⌫

, ⌧̂
w

) with the adaptation laws (6.41) stabilizes the equilibrium subspace Sa
e

⇢
R11N , defined in (6.42) , of the adaptive system for su�ciently large � > 0. This implies

that ⌘ (= v�v
g

),w, and p are bounded, and e is bounded away from S = ker⇧. That is, ē
s

is bounded away from S
e

and p is bounded for all time. Since V (ē
s

,p;�) is monotonically

decreasing by (6.45) and lower-bounded by 0, it has a finite limit. Integrating V̇  �S̄
d

from t to t+ ⌧ , we have

Z

t+⌧

t

S̄
d

(ē
s

(⌧);�)d⌧  V (ē
s

(t),p(t);�)� V (ē
s

(t+ ⌧),p(t+ ⌧);�),

so the limit lim
⌧!1

R

t+⌧

t

S̄
d

(ē
s

(⌧);�) d⌧ exists and is finite.

To apply Barbalat’s lemma for the proof of the convergence, we establish the uniform

continuity of S̄
d

(ē
s

(⌧);�) by showing that its time derivative is bounded. Since

ē
s

2 S
e

=) Ā⌦
0

ē
s

2 S
e

, ⇢⇤
⌫

(e) = 0
4N

, and ⇢⇤
w

(e) = 0
4N

,

and B̄⌦
v1

, we have f̄⌦
c

(ē
s

) 2 S
e

whenever ē
s

2 S
e

by (6.34). Moreover, since ⌧̃
⌫

and ⌧̃
w

are all bounded, (6.40) implies that ˙̄e
s

is bounded away from S
e

whenever ē
s

2 S
e

. Also

note that the matrices and their time derivatives in Theorem 6.2 are all bounded as shown

below.

1. ⌅ and its time derivative are bounded since w and ẇ are bounded, and

dt
2

(v
j

)/dv
j

=

"

0 1

�1 0

#

.

2. ⌥ and its time derivative are all bounded since so are v
i

, w, ẇ, A⌦
s

x, B⌦
v2

and all

of their time derivatives.

3. Similarly, ⌃ and its time derivative are bounded since so are its matrix components.

(see the definitions and structures of the matrices in Theorem 6.2). By the above argument,

it is established that the matrix S̄
d

(ē
s

;�) and its time derivative are bounded. The time
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derivative of S̄
d

(ē
s

;�) is given by

˙̄S
d

= 2 ˙̄eTs S̄d

ē
s

+ ēT
s

˙̄S
d

ē
s

,

where ˙̄S
d

is given by

˙̄S
d

(ē
s

;�) =

2

4

�(A⌦
s

)T ⌅̇
T

⇧�⇧⌅̇A⌦
s

?

��⇧⌅̇
T

+ (Ḃ⌦
v2

)T⇧
�

A⌦
s

⌃̇(ē
s

;�)

3

5 .

Obvously, the structures of S
d

and Ṡ
d

show that

ē
s

2 S
e

=) ēT
s

˙̄S
d

ē
s

= 0 and ˙̄e
T

s

S̄
d

ē
s

|{z}

=05N

= 0

Since ē
s

and ˙̄e
s

are bounded away from S
e

, ˙̄S
d

(ē
s

(⌧),�) is bounded, which implies that

S̄
d

(ē
s

(⌧),�) is uniformly continuous. Therefore, the application of Barbalat’s lemma [32,

Lemma 8.2] proves that S̄
d

(ē
s

(⌧),�) ! 0 as ⌧ ! 1, which implies that d(ē
s

(⌧), S
e

) ! 0

as ⌧ !1, so the consensus kq
i

(⌧)�q
j

(⌧)�d
ij

k ! 0, kv
i

(⌧)�v
g

k ! 0, and w
i

(⌧)! 0 is

achieved as ⌧ !1. Furthermore, in the limit ⌧ !1, we have v
i

= v
g

, ⌘̇
i

= 0
2

, w
i

= 0,

⇢⇤
i⌫

= 0 for all i 2 N , so the velocity dynamics ⌘̇i = T(v
i

)[ ⌫̇
i

w
i

]T becomes in the limit

0
2

= t
1

(v
g

)⌫̇ss
i

= t
1

(v
g

) · J�1

i1

(�b
i

⌫ss
i

+ ↵
i

(wss

i

)2 + r
i

⌧̂ ss
i⌫

)

= t
1

(v
g

) · h
i1

�� c̃ss
i1

⌫ss
i

� z̃ss
i1

(wss

i

)2 + ĥss
i1

⇢⇤
i⌫

�

= �h
i1

· t
1

(v
g

)kv
g

k
2

· c̃ss
i1

,

where the superscript ‘ss’ means ‘steady-state’ and indicates the value or a time function of

the variables in the steady-state or in the limit ⌧ !1. Since t
1

(v
g

) 6= 0
2

and kv
g

k
2

6= 0,

the above equality in the limit necessarily implies c̃ss
i1

= 0, so ĉ
i1

(⌧)! c
i1

as ⌧ !1.

6.4.2 Decentralization and Simplification of Adaptation Laws

The stabilizing adaptation laws (6.41) in Theorem 6.3 is centralized and contains the

complicated global vector functions �
1

and �
2

. In this subsection, we decentralize and

simplify the adaptation laws (6.41) by analyzing �
1

and �
2

under the positive definite
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matrices Q and Q
v

in the ARE (6.15) given by

Q = diag{q
1

I
2

, q
2

I
2

} and Q
v

= q
v

I
2

(6.46)

for some positive constants q
1

, q
2

, q
v

> 0. As the first step, the next lemma states the

matrix-components P
11

, P
12

, P
22

2 R2⇥2 of the decomposition

P =

"

P
11

P
12

PT

12

P
22

#

(6.47)

can be expressed as as P
11

= p
11

I
2

, P
12

= p
12

I
2

, and P
22

= p
22

I
2

for some positive

constants p
11

, p
12

, and p
22

, which dramatically simplifies the proposed adaptation laws.

Lemma 6.5. Under Q and Q
v

given by (6.46), P
11

, P
12

, and P
22

in the decomposi-

tion (6.47) of the solution P of the ARE (6.15) are expressed in the diagonal forms

P
11

= p
11

I
2

,P
12

= p
12

I
2

, and P
22

= p
22

I
2

for p
11

, p
12

, p
22

> 0 given by

8

>

>

>

<

>

>

>

:

p
12

=
p
�q

1

,

p
22

= q
v

�� 1 +
p

1 + �(2p
12

+ q
2

)/q2
v

�

= q
v

�� 1 +
p

1 + �(2
p
�q

1

+ q
2

)/q2
v

�

,

p
11

= ��1p
12

(q
v

+ p
22

) = ��1q
v

p
�q

1

·p1 + �(2
p
�q

1

+ q
2

)/q2
v

.

Proof. Substituting the block-wise expressions of the matrices P, Q, Q
v

, A
c

, and B
0

into

the ARE (6.15), we obtain

0
4⇥4

=AT

c

P +PA
c

+Q� 1

�
PB

0

BT

0

P

=

"

0
2⇥2

?

P
11

� ��1q
v

PT

12

PT

12

+P
12

� 2��1q
v

P
22

#

+

"

q
1

I
2

?

0
2⇥2

q
2

I
2

#

� 1

�
·
"

P
12

PT

12

?

P
22

PT

12

P2

22

#

=

"

q
1

I
2

� ��1P
12

PT

12

?

P
11

� ��1q
v

PT

12

� ��1P
22

PT

12

PT

12

+P
12

+ q
2

I
2

� 2��1q
v

P
22

� ��1P2

22

#

.

From the (1, 1)-th block, we have P
12

= PT

12

= p
12

I
2

with p
12

=
p
�q

1

. Next, substituting

P
12

= PT

12

= p
12

I
2

and P
22

= p
22

I
2

into the (2, 2)-th block yields the quadratic equation

p2
22

+ 2q
v

p
22

� �(2p
12

+ q
2

) = 0
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whose positive solution exactly matches with the expression of p
22

. Finally, substituting

PT

12

= p
12

I
2

and P
22

= p
22

I
2

into the (2, 1)-th block completes the proof.

Next, noticing that the Q-function Q⇤
d

(ē
s

;�) = ēT
s

Q
d

(v;�)ē
s

given in Theorem 6.2 is

expressed as Q⇤
d

(ē
s

;�) = �eT⇧e + 2eT⇧B⌦
v2

w + �wTD2

v

w, its partial derivatives r
e

Q⇤
d

and r
w

Q⇤
d

that are shown in �
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, respectively, are expressed as
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)T⇧e+ �D2

v

w. (6.49)

By the block-matrix operations, the terms in (6.48) can be deployed as follows.
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where J 2 R2⇥2 and F 2 R4⇥4 are defined as

J :=

2

6

4

0 1

�1 0

3

7

5

and F :=
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r
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Hence, the regression function �
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(B⌦
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can be written as
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>

>

<
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>
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Similarly, (B⌦
v2

)T⇧e and �D2
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w in (6.49) can be rearranged as follows.
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Now, let t
1j

⌘ t
1

(v
j

) and t
2j

⌘ t
2

(v
j

) for simplicity. Considering the expression (6.46)

of Q and Q
v

and revoking Lemma 6.5, one can see that P is expressed as

P =
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p
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Hence, �
1i

can be written as
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In a similar way, �
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(6.50)

Hence, the w⇤
i

-expression in (6.50) dramatically simplifies �
2i

as

�
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= �kv
i

k2
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(w
i

� w⇤
i

).

Furthermore, noting that tT
1i

J = kv
i

k�1

2

tT
2i

and using (6.50), �
1i

can be simplified in a

similar manner as

�
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k
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Since the matrices in (6.38) and (6.41) are all diagonal, the control and adaptation laws

can be written agent-wisely. Table 6.1 summarizes the final control law (⌧
i⌫

, ⌧
iw

) equipped

with the derived adaptation laws. While the derivations were complex, we finally obtain

the simple expressions of both control and adaptation laws in a decentralized manner as

shown in the table. Moreover, by (6.6), the actual torque inputs to the left and right wheels
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Table 6.1: Adaptive inverse optimal control & adaptation laws with design equations

Control Laws

(

⌧̂iL = ⌧̂i⌫ + ⌧̂iw

⌧̂iR = ⌧̂i⌫ � ⌧̂iw
with

(

⌧̂i⌫ = ĉi1⌫i + ẑi1w
2
i + ĥi1⌫̇

⇤
i

⌧̂iw = ĉi2wi + ẑi2⌫iwi + �ĥi2(w⇤
i � wi)

Contol Parameters

* �: a su�ciently large positive constant.

* u⇤
i = (⌫̇⇤i , w

⇤
i ): the inverse optimal policy given by



⌫̇⇤i
w⇤

i

�

= � 1

�
T�1(vi)

 

X

j2Ni

aij
�

p12(qi � qj � dij) + p22(vi � vj)
�

+ qv (vi � vg)

!

.

Adaptation Laws

˙̂c1i = �g(i)11 �1i⌫i,
˙̂z1i = �g(i)12 �1iw

2
i ,

˙̂
h1i = �g(i)13 �1i⌫̇

⇤
i ,

˙̂c2i = �g(i)21 �2iwi, ˙̂z2i = �g(i)22 �2i⌫iwi,
˙̂
h2i = ��g(i)23 �2i(w

⇤
i � wi),

Adaptation Parameters

* G(i) =

"

g
(i)
11 g

(i)
12 g

(i)
13

g
(i)
21 g

(i)
22 g

(i)
23

#

with g
(i)
kj > 0: the adaptation gain matrix.

* (�1i,�2i): the regression function given by

�1i = ���⌫̇⇤i + �wikvik2(wi � w⇤
i ).

�2i = �kvik22(wi � w⇤
i )

where T(vi) =
⇥

t1i t2i
⇤

.

can be obtained as ⌧
iL

= ⌧
i⌫

� ⌧
iw

and ⌧
iR

= ⌧
i⌫

+ ⌧
w

, respectively, as shown in Table 6.1.

6.5 Simulation Results

To verify the performance of the proposed adaptive inverse optimal control laws equipped

with the adaptation laws both shown in Table 6.1, numerical simulations are carried out

with the three mobile robots (N = {1, 2, 3}) whose kinematic and dynamic models are

given by (6.1) and (6.2), respectively. The parameters of the mobile robots and their true

values used in the simulations are given in Table 6.2. In the simulations, their initial
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estimates are sampled by the following uniform distributions:
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U(0, 1))R
i

, d̂
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, Îm
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U(0, 1))Im
i

,

where U(0, 1) denotes the uniform distribution over the interval [0, 1], �
d

= 0.5, and

�
s

= 1. From these estimates, the initial estimates of the control parameters ĉ
ik

, ẑ
ik

, and

ĥ
ik

(i 2 N , k = 1, 2) are calculated as

ẑ
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where ↵̂
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i

/2, Ĵ
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:= Îw
i

+ Î
i

/2R̂2

i

, and Ĵ
i2

:= Îw
i

+ r̂2
i

m̂
i

/2. If the estimates

of the mobile robots’ parameter are exactly same to their true values, then so are the

initial parameter estimates ĉ
ik

, ẑ
ik

, and ĥ
ik

in the adaptive optimal CGFC laws. In the

simulations, the graph Laplacian L describing the communication topology among the

mobile robots is given by

L =

"

1 �1 0
�1 2 �1
0 �1 1

#

,

whose minimal positive eigenvalue �
2

(L) called the algebraic connectivity of the undirected

graph satisfies �
2

(L) = 1, so (6.24) in Theorem 6.1 holds.

The matrices Q and Q
v

and the positive constant � in the ARE (6.15) are set to

Q = diag{q
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I
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, q
2

I
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= q
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, and � = 1 with q
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= 1, which yields the
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p
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with p
11

= 2, p
12

= p
22

= 1 by Lemma 6.5. Hence,

the optimal policy (⌫̇⇤
i

, w⇤
i

) in the simulations is given by

⇥
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i

w⇤
i
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)� (q
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j
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ij

�

+ (v
i

� v
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.

In the simulations, � > 0 and the adaptation gains g(i)
jk

are set to � = 10 and g
(i)

jk

= 1 for

all j = 1, 2, 3, k = 1, 2, and i 2 N ; the initial poses p0

i

= (x
i

(0), y
i

(0), ✓
i

(0)) and initial
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Table 6.2: The parameters of the mobile robots in the simulation

Mobile Robot
Parameters

True Values in
Mobile Robot 1

True Values in
Mobile Robot 2

True Values in
Mobile Robot 3

Units

Ri 0.75 1.5 2 [m]

di 0.3 0.5 0.7 [m]

ri 0.15 0.4 0.5 [m]

mic 30 50 55 [kg]

miw 1 2.5 3.5 [kg]

bi 5 10 6.5 [kg·m2/s]

Ici 15.625 40.625 35 [kg·m2]

Iwi 0.005 0.01 0.02 [kg·m2]

Imi 0.0025 0.005 0.00625 [kg·m2]

velocities ⇠0
i

= (⌫
i

(0), w
i

(0)) of the mobile robots are assumed to be given by

p0

1

= (0, 0,⇡/6), p0

2

= (0, 1, 0), p0

3

= (1, 0,�⇡/6),

⇠0
1

= (2, 0), ⇠0
2

= (1, 0), ⇠0
3

= (3, 0).

6.5.1 Simulation Example 1: Simple Case

At first, we consider the simple case, where the distance vectors d
i

of the mobile robots

and the group velocity v
g

= [v
g,x

v
g,y

]T are given by

d
1

= [ 3 0 ]T , d
2

= [ 0 1 ]T , d
3

= [ 0 � 1 ]T , v
g

= [ 1 1 ]T ,

respectively. The simulation result for some samples of the initial parameter estimates is

described in Figs. 6.2, 6.3, and 6.4, where Fig. 6.2 describes the trajectories of the poses

of mobile robots, Fig. 6.3 llustrates the variations of mobile robots’ linear and angular

velocities (⌫
i

, w
i

), and Fig. 6.4 is the parameter variations of ĉ
i1

in the mobile robots.

As shown in Figs. 6.2 and 6.3(a), the mobile robots driven by the proposed adaptive

inverse optimal CGFC scheme shape and maintain the desired formation and ultimately

move along the same group velocity v
g

. Notice that the group velocity v
g

in this case can
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Figure 6.2: (Example 1) Position and angle trajectories of mobile robots.
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Figure 6.3: (Example 1) The velocities (⌫
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, w
i

) of mobile robots: (a) ⌫
i

and (b) w
i

.

be rewritten as

v
g

=
p
2 · [ cos(⇡/4) sin(⇡/4) ]T ⇡ 1.414 · [ cos(0.7854) sin(0.7854) ]T .
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From Fig.6.2 and 6.3(a), one can see that the final angle orientations and the final group

speeds of the robots are all approximately equal to ⇡/4 and
p
2, respectively, implying

the convergence v
i

! v
g

for all i = 1, 2, 3. As shown in Fig. 6.3(b) and Fig. 6.4, the

angular velocity w
i

and the paraeter estimate errors “ĉ
i1

� c
i1

” all converges to zeros,

which coincides with Theorem 6.3. In Fig. 6.4, the three black solid lines indicate the

respective true values c
i1

of the estimates ĉ
i1

. Here, note that

1. w
i

(⌧) should be necessarily zero in the limit ⌧ !1 to drive the mobile robots finally

with the constant same angle orientation ✓ ⌘ lim
⌧!1 ✓

i

(⌧);

2. ĉ
i1

(⌧) becomes necessarily equal to c
i1

in the velocity consensus v
i

(⌧) ! v
g

, and

Theorem 6.3 states both ĉ
i1

(⌧)! c
i1

and v
i

! v
g

are achieved in the limit ⌧ !1
without any additional conditions; unlike the arguments regarding the parameter

convergence in the standard adaptive control theories [31, 55], the parameters ĉ
i1

converges to their true values without any persistently exciting conditions while the

others ĉ
i2

, ẑ
ik

and ĥ
ik

(k = 1, 2), though not shown in the Figs., are just bounded

by the stability argument in Theorem 6.3.

6.5.2 Simulation Example 2: Management of v
g

and d
ij

’s

In this simluation, the profile of the group velocity v
g

is given by

v
g

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:



1.0
1.0

�

for 0  ⌧ < 20 [s],


0.5
0.5

�

+ s
20

(⌧)



0.5
0.5

�

for 20 [s]  ⌧ < 40 [s],


0.5
0.0

�

+ s
40

(⌧)



0.0
0.5

�

for 40 [s]  ⌧ < 60 [s],


1.0
0.0

�

� s
60

(⌧)



0.5
0.0

�

for 60 [s]  ⌧ < 80 [s],


0.5
0.0

�

+ s
80

(⌧)



0.5
0.0

�

for 80 [s]  ⌧ < 100 [s],


0.5
0.5

�

� s
100

(⌧)



0.0
0.5

�

for 100 [s]  ⌧  120 [s],

(6.51)
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Figure 6.4: (Example 1) Trajectories of the parameter estimates ĉ
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Table 6.3: The profile of the desired formation d
ij

= x
ij

� s
t

(⌧)y
ij

in the simulation

dij (= dji) Time interval xij yij

d12

0 [s]  ⌧  40 [s]
40 [s]  ⌧  80 [s]
80 [s]  ⌧  120 [s]

[ 3 � 1 ]T

[ 6 � 2 ]T

[ 0 2 ]T

[ 0 0 ]T

[ 3 � 1 ]T

[�3 1 ]T

d23

0 [s]  ⌧  40 [s]
40 [s]  ⌧  80 [s]
80 [s]  ⌧  120 [s]

[ 0 2 ]T

[ 0 4 ]T

[ 0 2 ]T

[ 0 0 ]T

[ 0 2 ]T

[ 0 � 2 ]T

d31

0 [s]  ⌧  40 [s]
40 [s]  ⌧  80 [s]
80 [s]  ⌧  120 [s]

[�3 � 1 ]T

[�6 � 2 ]T

[�3 � 1 ]T

[ 0 0 ]T

[�3 � 1 ]T

[ 3 1 ]T

where s
t

(⌧) := exp {��(⌧ � t)} with � = 1 is the smoothing function of the trajectory.

In (6.51), the group velocity v
g

for each time interval is of the form v
g

= x±s
t

(⌧)y for some

vectors x,y 2 R2 with the initial time t > 0 of the interval. This form is actually a smooth

approximation of the hard profile v
g

= x for some vector x for each time interval. This

hard profile of v
g

can be obtained by replacing s
t

(⌧) by its limit “lim
⌧!1 s

t

(⌧) = 0”. In a

similar way, the profile of d
ij

for each i, j 2 {1, 2, 3} is given in a form d
ij

= x
ij

�s
t

(⌧)y
ij

,

where x
ij

, y
ij

2 R2 are vectors given in Table 6.3.
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Figure 6.5: (Example 2) Position and angle trajectories of mobile robots.
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Figure 6.6: (Example 2) The velocities (⌫
i

, w
i

) of mobile robots: (a) ⌫
i

and (b) w
i

.

The simulation result for some initial parameter estimates under the proposed adaptive

inverse optimal CGFC scheme is shown in Figs. 6.5, 6.6, and 6.7, which represent the

trajectories of the poses, the velocities (⌫
i

, w
i

), and the parameters ĉ
i1

of the mobile
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Figure 6.7: (Example 2) Trajectories of the parameter estimates ĉ
i1

robots, respectively. As shown in Figs. 6.5 and 6.6(a), the mobile robots e↵ectively track

the desired formation and group velocity profiles described by d
ij

and v
g

; the black solid

line in Fig. 6.6(a) indicates the desired speed given by the group velocity profile.

Moreover, as shown in Figs. 6.5(b) and 6.6(b), whenever the given group velocity

profile changes its direction, the angular velocities of the robots are fluctuated from the

zero steady-state to regulate their orientations and then converge to zero again; Fig. 6.6(a)

and Fig. 6.7 also show that the linear velocities ⌫
i

and the parameter estimates ĉ
i1

are

perturbed only at the starting and changing points of v
g

and d
ij

and then converge to

the desired point thereafter. From this, one can see that even in this complicated case,

the parameter estimates ĉ
i1

are also regulated near the true values without imposing any

persistently exciting conditions. If v
g

and d
ij

are constant as we have assumed in the

design, then such perturbations shown in Fig. 6.6(a) and Fig. 6.7 are eliminated, and

the estimates ĉ
i1

converges to their true values exactly. On the other hand, the other

parameters in the control laws, though not plotted here, are just bounded by the stability

argument in Theorem 6.2.
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6.5.3 Simulation Example 3: Non-adaptive Inverse Optimal CGFC

In this final example, we apply the inverse optimal CGFC scheme

8

>

>

<

>

>

:

⌧⇤
i⌫

= c
i1

⌫
i

+ z
i1

w2

i

+ h
i1

⌫̇⇤
i

⌧⇤
iw

= c
i2

w
i

+ z
i2

⌫
i

w
i

+ �h
i2

(w⇤
i

� w
i

)

to the mobile robots without adaptations of the parameters ĉ
ik

, ẑ
ik

, and ĥ
ik

, where c
ik

, z
ik

,

and h
ik

are true values of the parameters. This simulation not only verifies the performance

of the inverse optimal CGFC scheme, but makes it possible to compare the adaptive

inverse optimal CGFC scheme in the previous example with the non-adaptive one. In the

simulation, v
g

and d
ij

are given exactly same to those in the previous example.

The simulation results are plotted in Figs. 6.5 and 6.6. As shown in the figures, the

proposed (non-adaptive) inverse optimal CGFC scheme (⌧ ⇤
⌫

, ⌧ ⇤
w

) control the mobile robots

to e�ciently follow the desired trajectories of their poses and velocities. On the other hand,

there still exist the over- and under-shoots at the starting and changing points of v
g

and/or

d
ij

as in the previous examples. This is because we have designed the proposed scheme

under the assumption that v
g

and d
ij

are constant. This remains a future work of designing

the same CGFC scheme with taking the time varying v
g

and d
ij

into considerations.

Comparing the simulation results of the adaptive scheme in the previous example with

those of this non-adaptive schemes, one can see that the respective trajectories of the

poses and velocities in both examples are almost same except values of the peak points.

Therefore, though the parameters of the adaptive inverse optimal CGFC scheme in the

previous example are not estimated exactly, the adaptive scheme approximately achieves

the performance of the non-adaptive inverse optimal CGFC scheme.
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Figure 6.8: (Example 3) Position and angle trajectories of mobile robots.
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Figure 6.9: (Example 3) The velocities (⌫
i

, w
i

) of mobile robots: (a) ⌫
i

and (b) w
i

.

6.6 Summary

From the control-theoretic perspectives, an adaptive inverse optimal CGFC was designed

for multiple mobile robots described by CT dynamical systems with restricted information
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exchange. The kinematics and dynamics models of the mobile robots were transformed to

the combined dynamics of consensus errors and velocity motions, which helps the design

of the consensus-based inverse optimal control and the adaption parts separately. By

Lyapunov and Hamiltonian analyses, it has been shown that

• the proposed scheme asymptotically achieves the desired formation and the desired

group velocity under the undirected connected communication graph topology and

adaptation laws;

• the proposed one is inverse optimal when the parametric uncertainties in the mobile

robots are eliminated by the adaptation.

The simulation results were also provided to verify the performance of the proposed method

under various scenarios.
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Chapter 7

Conclusions

In this dissertation, IRL and adaptive inverse optimal control were studied as the candi-

dates of the true adaptive optimal control for CT dynamical systems. As a preliminary

o✏ine algorithm, the ideal PI was proposed to introduce the fundamental IRLs in Chap-

ter 4 and to improve the explorized IRLs in Chapter 5, where the domains of the value

functions in the existing o✏ine PI were extended up to the ROAs. To develop the ideal

PI above, the global properties of value functions were also studied on the ROAs. As a

preliminary inverse optimal control scheme, an inverse optimal input-dynamics extension

method is theoretically developed to employ it as a mathematical tool for the design of

adaptive inverse optimal control in Chapter 7.

In Chapter 4, a family of partially model-free fundamental IRL algorithms including

I-PI, I-VI, infinitesimal GPI, and their generalization “I-GPI” were presented in CT LQR

framework and then classified in a new way in terms of the iteration horizon, the product

of the iteration horizon involved in computational complexity and the time horizon deter-

mining the sampling period in time. In this new classification, the I-GPIs with the same

update horizon are all equivalence classes in the iteration domain, implying the existence

of the trade-o↵ between the complexity and the sampling period. Then, in Chapter 4, the

closed-loop stability and monotone convergence of I-GPI were investigated in relation to

the update horizon. The main focus here were the two modes of convergence called VI- and

PI-modes in convergence. These two convergence modes came from I-PI and infinitesimal

GPI at the two extreme tips of the new classification and characterize the convergence

behaviors of the fundamental IRLs. Here, it has been shown that PI-mode convergence

guarantees the closed-loop stability and that VI-mode convergence is achieved only with

the su�ciently small update horizon.
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In Chapter 5, two online IRL methods that are able to explore the state space were

proposed and analyzed based on the nonlinear I-PI and the concepts of both invariant

explorations and advanced I-TD extended from the ideas of RL. These online IRL methods

e�ciently use the explorations to excite the necessary signals for online learning and, in

integral Q-learning, to relax the model requirements; integral Q-learning provided the

model-free online learning solution for the CT nonlinear optimal control problems with

unknown dynamics, while the other one named explorized I-PI was provided as an e↵ective

online solution when the input coupling terms of the dynamics are known. The properties

such as ISS, uniqueness of advanced I-TD solution, and the convergence to the solution

were studied in relation to the design of the exploration signal.

In Chapter 6, from the control-theoretic perspectives, an adaptive inverse optimal

CGFC was designed for multiple mobile robots described by CT dynamical systems with

restricted information exchange. The kinematics and dynamics models of the mobile robots

were transformed to the combined dynamics of consensus errors and velocity motions,

which helps the design of the consensus-based inverse optimal control and the adaption

parts separately. By Lyapunov and Hamiltonian analyses, it has been shown that

• the proposed scheme asymptotically achieves the desired formation and the desired

group velocity under the undirected connected communication graph topology and

adaptation laws designed by Lyapunov analysis;

• the proposed one is inverse optimal when the parametric uncertainties in the mobile

robots are eliminated by adaptation.

In addition, the numerical simulations were performed to verify its performance and

supports theoretical results.

Though there are still a number of future works we should focus on for true adaptive

optimal control such as

• overcoming the exploration and exploitation dilemma,
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• combining the RL methods with conventional adaptive (inverse optimal) controls,

• robustness with respect to the external disturbances,

• extending the results to the more general systems,

• stochastic considerations,

I believe that the works in this dissertation indeed make a progress toward developing

the true adaptive optimal control of CT dynamical systems and bridge a gap among the

interdisciplinary areas—reinforcement learning, adaptive control, and optimal control.
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Appendix A

Kronecker and Khatri-Rao Products

For any two matrices X = [x
ij

] 2 Rn⇥m and Y 2 Rp⇥q, the Kronecker product X⌦Y of

X and Y is defined as

X⌦Y :=

2
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. (A.1)

This Kronecker product has the following well-known properties.

Proposition A.1. For any real matrices X, Y, Z, and any real number k 2 R,

· bilinearity:
8

<

:

X⌦ (Y + Z) = X⌦Y +X⌦ Z

(X+Y)⌦ Z = X⌦ Z+Y ⌦ Z,

· associativity:
8

<

:

X⌦ (Y ⌦ Z) = (X⌦Y)⌦ Z

(kX)⌦Y = X⌦ (kY) = k(X⌦Y).

Proposition A.2. For any X 2 Rn⇥m, Y 2 Rp⇥q, Z 2 Rm⇥l, and W 2 Rq⇥r,

· transpose property: (X⌦Y)T = XT ⌦YT

· mixed-product property: (X⌦Y)(Z⌦W) = XZ⌦YW.

Proposition A.3. If X 2 Rn⇥n and Y 2 Rp⇥p are invertible, then

(X⌦Y)�1 = X�1 ⌦Y�1.

Proposition A.4. For any real vectors x 2 Rn and y 2 Rm, there is a permutation

matrix U 2 R(nm)⇥(nm) such that

x⌦ y = U(y ⌦ x).
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For the matrices X 2 Rn⇥m and Ȳ 2 R(np)⇥q partitioned as

X =
h

xT
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xT
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· · · xT
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i
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and Ȳ =
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,

where x
ir

2 R1⇥m denotes the i-th row vector of X, and Y
i

2 Rp⇥q is the i-th submatrix

of Y (i = 1, 2, · · · , n), the Khatri-Rao product X⌦ {Y
i

}N
i=1

(or X⌦ Ȳ), is defined as
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As mentioned in Section 2.1, the Khatri-Rao product X⌦ �Y
i

 

n

i=1

is a kine of a general-

ized Kronecker product, so some properties of the Kronecker product in Propositions A.1

through A.4 can be extended to the Khatri-Rao product X ⌦ �Y
i

 

n

i=1

. For this we need

the following lemma whose proof is trivial.

Lemma A.1. For Y
1

,Y
2

, · · · ,Y
n

2 Rp⇥q for some p, q 2 N,

diag{Y
1

,Y
2

, · · · ,Y
n

} = I
n

⌦ {Y
i

}n
i=1

.

Lemma A.2. For any invertible real matrices Y
i

’s (i = 1, 2, · · · , n),
�

diag{Y
1

,Y
2

, · · · ,Y
n

}��1

= diag{Y�1

1

,Y�1

2

, · · · ,Y�1

n

}.

Proposition A.5. For any X,W 2 Rn⇥m, Y
i

,Z
i

2 Rp⇥q (i = 1, 2, · · · , n), and k 2 R,

· bilinearity:
8

<
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· associativity: (kX)⌦ �Y
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= k
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X⌦ �Y
i

 

n
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�

.

Proof. The proof can be done by the definition (A.2) and the block-diagonal matrix mul-

tiplications.
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Proposition A.6. For any X 2 Rn⇥m, Y
i

2 Rp⇥q, and Z
i

2 Rq⇥r (i = 1, 2, · · · , n),

· mixed-product property:
�

I
n
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n

i=1

��
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n

i=1

�
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i

Z
i

 

n

i=1

(A.3)

Proof. The proof can be done by using Lemma A.1, substituting the definitions of the

Khatri-Rao product (A.2) and the block-diagonal operation diag{Y
1

, · · · ,Y
n

} in (2.1),

and performing the block-matrix multiplications

Proposition A.7. If X 2 Rn⇥n and Y
1

,Y
2

, · · · ,Y
n

2 Rp⇥p are all invertible, then

�
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. (A.4)

Proof. For the proof, suppose that X and Y
1

,Y
2

, · · · ,Y
n

are all invertible. Then, by

Proposition A.3 and Lemma A.2, X ⌦ I
p

and I
n

⌦ �Y
i

 

n

i=1

are also invertible and their

inverses are given by

8

<

:
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.

Hence, the application of (A.3) and the property (XB)�1 = B�1X�1 yields
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,

which completes the proof.
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Appendix B

Schur Complement

For a symmetric matrix P 2 Rn⇥n decomposed as P =

"

P
11

P
12

PT

12

P
22

#

with P
11

2 Rn1⇥n1 ,

P
12

2 Rn1⇥n2 , and invertible P
22

2 Rn2⇥n2 with n
1

and n
2

satisfying n
1

+ n
2

= n, its

Schur complement S(P) is defined as

S(P) := P
11

�P
12

P�1

22

PT

12

.

Notice that any quadratic function V (z) = zTPz of z = col{x,y} 2 Rn with the vectors

x and y compatible with the block matrices of P can be represented in terms of the Schur

complement of P as

V (z) = xTP
11

x+ 2xTP
12

y + yTP
22

y

= xTS(P)x+
�

y +P�1

22
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12
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22
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22

PT

12

x
�

. (B.1)

From this Schur complement expression, the following well-known Schur complement

lemma can be directly obtained.

Lemma B.1. P is positive semi-definite iif so is S(P).

Lemma B.2. rankP = rankS(P) + n
2

.

From Lemmas B.1 and B.2, one can prove the following Schur complement null-space

lemma that is used in the proof of.

Lemma B.3. If the nullities of both P
11

and S(P) are same, P is positive semi-definite,

and kerP
11

✓ kerP
12

, then

kerP
11

= kerS(P),

kerP =
�

z = col{x,y} 2 Rn : x 2 kerP
11

and y = 0
n2

 

.
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Proof. The condition “kerP
11

✓ kerP
12

” and the definition of S(P) show that

x 2 kerP
11

implies x 2 kerS(P).

Since the dimensions of both null-spaces are same, the condition is necessary and su�cient,

the proof of kerP
11

= kerS(P). Next, since P is positive semi-definite, so is S(P) by

Lemma B.1. Hence, (B.1) implies that z 2 kerP iif x 2 kerS(P) and y = �P�1

22

PT

12

x.

The former implies z 2 kerP
11

; the latter and kerP
11

= kerS(P) show y = 0
n2 , which

completes the proof.
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Appendix C

Graph Theory

A graph G is a triple G = {N , E ,A}, where

• N := {1, 2, · · · , N} is the node set;

• E ✓ N ⇥N represents the edge set;

• A = [a
ij

] 2 RN⇥N denotes the weighted adjacency matrix whose elements a
ij

’s are

given by a
ij

> 0 if (i, j) 2 E and a
ij

= 0 otherwise.

The neighborhood N
i

✓ N of a node i 2 N is defined as

N
i

:= {j 2 N : (i, j) 2 E}.

A graph G is said to be simple if a
ii

= 0 for all i 2 N , implying that A has zero di-

agonals; G is said to be undirected if a
ij

= a
ji

for all i, j 2 N , which implies that

A is symmetric. A path P
i1i2···il of G is a subset of the edge E defined as P

i1i2···il :=
�

(i
1

, i
2

), (i
2

, i
3

), · · · , (i
l�1

, i
l

)
 ✓ E , where l is called the length of the path P

i1i2···il .

Definition C.1. A graph G is said to be connected if for each i, j 2 N , there is a path

P
i1i2···il from i = i

1

to j = i
l

for some length l 2 N.

The Laplacian matrix L = [l
ij

] 2 RN⇥N of a simple graph G is defined as l
ij

= �a
ij

for i 6= j and l
ii

=
P

N

j=1

a
ij

. If the graph G is undirected, then the associated Laplacian L

is always positive semi-definite and have at least one zero eigenvalue associated with the

eigenvector 1
N

2 RN . That is,

0 = �
1

(L)  �
2

(L)  · · ·  �
N

(L).

Theorem C.1. The graph G is simple, undirected, and connected if and only if �
2

(L) >

0 and rankL = N � 1.
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Proof. See [77] with Gershigorin’s circle theorem.

Since the Laplacian matrix L is symmetric positive semi-definite and �
1

(L) = 0, there

is an orthogonal matrix U 2 RN⇥N such that

UTLU =

"

0 0T
N�1

0
N�1

⇤
N�1

#

,

where ⇤ := diag{�
2

(L), · · · ,�
N

(L)} [115]. Hence, we have the following corollary.

Corollary C.1. Let the graph G be simple, undirected, and connected. Then, there exists

an orthogonal matrix U 2 RN⇥N such that L is decomposed as

UTLU =

"

0 0T
N�1

0
N�1

⇤
N�1

#

,

where ⇤
N�1

2 RN⇥N is a diagonal positive definite matrix.
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Appendix D

Proofs

D.1 Proof of Lemma 2.4

Suppose “x 2 S implies V (x) = 0”, and for s 2 [0, r], let  (s) and �(s) be defined as

 (s) := inf
�

V (x) : s  d(x, S)  r
 

and �(s) := sup
�

V (x) : d(x, S)  s
 

,

respectively. Then,  (s) and �(s) are continuous and increasing. Furthermore, they satisfy

 (d(x, S))  V (x) = �(d(x, S)) (D.1)

for x 2 BS(r);  (0) = �(0) = 0 holds by the assumption that d(x, S) = 0 implies V (x) = 0.

Hence, (2.6) holds for ↵ =  and ↵̄ = �. Next, assume that the condition “x 2 S implies

V (x) = 0” is strengthened to

x 2 S () V (x) = 0.

Then, the definitions of  and � show that  (0) = �(0) = 0 and 0 <  (s)  �(s) for all

s 2 (0, r]. Hence, they are positive definite on [0, r]. On the other hand,  and � may not

belong to class K since they are not necessarily strictly increasing. Take

↵(s) =
s

s+ 1
 (s).

Then, it is strictly increasing since s/(s + 1) is strictly increasing and  (s) is increasing

and positive in (0, r]. In addition, s/(s + 1)  1 for s � 0 implies that ↵(s)   (s) for

s 2 [0, r]. Similarly, take the strictly increasing ↵̄(s) as

↵̄(s) = �(s) +
s

s+ 1
�(s)
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that satisfies �(s)  ↵̄(s) for s 2 [0, r]. Then, the above arguments show that ↵ and ↵̄

belong to class K and that (D.1) implies

↵(d(x, S))   (d(x, S))  V (x) = �(d(x, S))  ↵(d(x, S))

for x 2 BS(r). For D = Rn, r > 0 can be arbitrarily large, so  (s) and �(s) defined for

s 2 [0,1) as

 (s) := inf
�

V (x) : s  d(x, S)
 

and �(s) := sup
�

V (x) : d(x, S)  s
 

,

work for the proof. In addition, if V (x)!1 as d(x, S)!1, then the function  (s) and

hence, ↵(s) tends to infinity as s!1. So, ↵ and ↵̄ can be chosen to belong class K1.

D.2 Proof of Lemma 2.5.

For the proof, consider the decomposition x = x
r

+ x
n

of a vector x 2 Rn, where x
r

2 Rn

belongs to the row space of P and x
n

2 kerP. Since the row space and the null space of

the same matrix are orthogonal complements of each other, for any y 2 kerP, kx�yk
2

=
p

kx
r

k2
2

+ kx
n

� yk2
2

holds, and hence we obtain

d(x, kerP) = kx
r

k
2

(D.2)

by the definition of the distance function d(x, S) in Section 2.2. Next, without loss of

generality, assume that P 6= 0
n⇥n

1 and P ⌫ 0
n⇥n

. Then, every eigenvalues of P are

real and nonnegative, and there is N 2 {0, 1, 2, · · · , n � 1} such that �
i

(P) > 0 for all

i 2 {N + 1, N + 2, · · · , n}. Hence, the singular value decomposition of P yields

P =



Q
n

Q
r

�

2

6

4

0
N⇥N

0
N⇥(n�N)

0
(n�N)⇥N

⇤
r

3

7

5

2

6

4

QT

n

QT

r

3

7

5

= Q
r

⇤
r

QT

r

, (D.3)

1If P = 0n⇥n, then the row space contains only the zero vector 0n, so that xr necessarily becomes to
0n. Hence, d(x, kerP) = 0 8x 2 Rn by (D.2), implying that any ↵, ↵̄ > 0 satisfy (2.8).
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where Q
n

2 Rn⇥N and Q
r

2 Rn⇥(n�N) are the orthogonal matrices whose columns

are eigenvectors corresponding to the zero and non-zero eigenvalues, respectively; ⇤
r

:=

diag{�
N+1

(P),�
N+2

(P), · · · ,�
n

(P)} 2 R(n�N)⇥(n�N). Here, the set of all nonzero eigen-

vectors in the columns of Q
r

is an orthonormal basis of the row space of P, implying

that

kQT

r

x
r

k
2

= kx
r

k
2

. (D.4)

Let z
r

2 Rn be defined as z
r

:= QT

r

x
r

. Then, (D.3) yields xT

r

Px
r

= zT
r

⇤
r

z
r

and thereby,

we obtain

�
N+1

(P)kz
r

k2
2

 xT

r

Px
r

 �
n

(P)kz
r

k2
2

. (D.5)

On the other hand, z
r

= QT

r

x
r

and (D.4) imply kz
r

k
2

= kx
r

k
2

, and xT

r

Px
n

= xT

n

Px
n

= 0

implies xT Px = xT

r

Px
r

. Therefore, substituting these results and (D.2) into (D.5) and

letting ↵ = �
N+1

(P) and ↵̄ = �
n

(P), one obtains (2.8), which completes the proof.

D.3 Proof of Theorem 3.3

The proof will be done by showing the corresponding conditions in Theorem 3.2. The

partial derivatives of Q⇤
d

(x̄
d

;�) with respect to x and u
d

is evaluated as

r
x

Q⇤
d

(x̄
d

;�) = �rV ⇤(x) +r2V ⇤T (x)G
d

(x)u
d

+ uT

d

rGT

d

(x)rV ⇤T (x) + u
d

rR
d

(x)u
d

= �rV ⇤(x) +r2V ⇤T (x)G
d

(x)u
d

+
md
X

j=1

u
dj

·


rgT

dj

(x)rV ⇤(x) + u
dj

rr
dj

(x)

�

r
udQ

⇤
d

(x̄
d

;�) = GT

d

(x)rV ⇤(x) + 2R
d

(x)u
d

.

Hence, the term (r
x

Q⇤
d

(x̄
d

))T
�

f
s

(x) +G
d

(x)u
d

�

can be expanded as follows:

(r
x

Q⇤
d

)T
�

f
s

+G
d

u
d

�

=� (rV ⇤)T
�

f
s

+G
d

u
d

�

+ uT

d

GT

d

(r2V ⇤)
�

f
s

+G
d

u
d

�

+
md
X

j=1

u
dj

·


(rV ⇤)Trg
dj

+ u
dj

rT r
dj

�

⇣

f
s

+G
d

u
d

⌘

. (D.6)
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Similarly, the term � · rTQ⇤
d

(x̄
d

)B
0d

R�1

d

(x)BT

0d

rQ⇤
d

(x̄
d

) can be expanded using the ex-

pression of r
udQ

⇤
d

(x̄
d

;�) as

� · (rQ⇤
d

)TB
0d

R�1

d

BT

0d

(rQ⇤
d

) = � · (r
udQ

⇤
d

)TR�1

d

(r
udQ

⇤
d

)

= � ·
⇣

rTV ⇤G
d

+ 2uT

d

R
d

⌘

R�1

d

⇣

GT

d

rV ⇤ + 2R
d

u
d

⌘

.

Then, rearranging the resultant equation multiplied by “1/4” yields

�

4
(rQ⇤

d

)TB
0d

R�1

d

BT

0d

(rQ⇤
d

) =
�

4
·
✓

rTV ⇤G
d

R�1

d

GT

d

rV ⇤ + 4uT

d

GT

d

rV ⇤ + 4uT

d

R
d

u
d

◆

= � ·
✓

1

4
rTV ⇤G

d

R�1

d

GT

d

rV ⇤ + uT

d

GT

d

rV ⇤ + uT

d

R
d

u
d

◆

.

(D.7)

Now, the substitutions of (rQ⇤
d

)T f̄
s

= (r
x

Q⇤
d

)T
�

f
s

+G
d

u
d

�

, (D.6), and (D.7), we have

(rQ⇤
d

)T f̄
s

� �

4
(rQ⇤

d

)T B̄
0d

R�1

d

B̄T

0d

(rQ⇤
d

)

=(r
x

Q⇤)T
�

f
s

+G
d

u
d

�� � ·
✓

1

4
rTV ⇤G

d

R�1

d

GT

d

rV ⇤ + uT

d

GT

d

rV ⇤ + uT

d

R
d

u
d

◆

=�

✓

rTV ⇤f
s

� 1

4
rTV ⇤G

d

R�1

d

GT

d

rV ⇤
◆

+ uT

d

GT

d

r2V ⇤�f
s

+G
d

u
d

�

+ �uT

d

R
d

u
d

+
md
X

j=1

u
dj

·


rTV ⇤rg
dj

+ u
dj

rT r
dj

�

⇣

f
c

+G
d

u
d

⌘

.

Substituting the HJB equation (3.7) and rearranging it, we obtain

(rQ⇤
d

)T f̄
s

� �

4
(rQ⇤

d

)T B̄
0d

R�1

d

B̄T

0d

(rQ⇤
d

)

=� �
✓

S +
1

4
(rV ⇤)TG

s

R�1

s

GT

s

(rV ⇤)

◆

+ uT

d

GT

d

r2V ⇤f
s

� uT

d



�R
d

�GT

d

(r2V ⇤)G
d

�

u
d

+
md
X

j=1

u
dj

·


rTV ⇤rg
dj

+ u
dj

rT r
dj

�

⇣

f
c

+G
d

u
d

⌘

=� � �S + (u⇤
s

)TR
s

u⇤
s

�

+ (rV ⇤)T⌅
⇣

f
c

+G
d

u
d

⌘

+ uT

d

GT

d

(r2V ⇤)f
c

� uT

d

⌃(x̄
d

;�)u
d

=� S̄
d

(x̄
d

;�)� � · u⇤T
s

R
s

u⇤
s
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which is obviously the HJB equation for the extended optimal control problem with the

dynamics (3.9) and the performance index (3.13). Moreover, the dynamic policy v⇤
d

(x̄
d

)

can be rewritten as

v⇤
d

(x̄
d

;�) = ��
2
R�1

d

GT

d

(rV ⇤)� � · (R�1

d

R
d

)u
d

= ��
2
·R�1

d



0
md⇥n

I
md

�

2

6

4

r
x

Q⇤
d

GT

d

rV ⇤ + 2R
d

u
d

3

7

5

= �1

2
· � 1
�
·R

d

��1

B̄T

0d

rQ⇤
d

.

Let S̄
c

(x̄
d

;�) be defined as S̄
c

(x̄
d

;�) := S̄
d

(x̄
d

;�) + � · u⇤T
s

(x)R
s

(x)u⇤
s

(x). To proceed

the proof, the following lemma is necessary.

Lemma D.1. Suppose �
1

< �
2

. Then, Q⇤
d

(x̄
d

;�
1

) � Q⇤
d

(x̄
d

;�
2

) and S̄
c

(x̄
d

;�
1

) � S̄
c

(x̄
d

;�
2

).

Proof of Lemma D.1. By the definitions of Q⇤
d

(x̄
d

;�) and S̄
c

(x̄
d

;�), we have for �
1

< �
2

Q⇤
d

(x̄
d

;�
2

) = (�
2

� �
1

)V ⇤(x) +Q⇤
d

(x̄
d

;�
1

) ⌫ Q⇤
d

(x̄
d

;�
1

)

S̄
c

(x̄
d

;�
2

) = (�
2

� �
1

)
⇣

S(x) + u⇤T
s

R
s

u⇤
s

+ u⇤T
d

R
d

u⇤
d

⌘

+ S̄
c

(x̄
d

;�
1

) ⌫ S̄
c

(x̄
d

;�
1

),

which proves the lemma.

Finally, Assumption 3.3 and Lemma D.1 imply 8x 2 B̄S(r) ⇢ ⌦ and 8u
d

2 Rmd ,

↵
q

(d(x̄
d

, S
e

))  Q⇤
d

(x̄
d

;�)  Q⇤
d

(x̄
d

;�)

↵
s

(d(x̄
d

, S
e

))  S̄
d

(x̄
d

;�)  S̄
c

(x̄
d

;�)  S̄
c

(x̄
d

;�)

holds for any � � � > 0, where ⌦ ✓ D(D, S) is the domain of V ⇤. Hence, Q⇤
d

(x̄
d

;�)

and S̄
c

(x̄
d

;�) are positive semi-definite on BS(r) ⇥ Rmd and satisfy Q⇤
d

(x̄
d

;�) = 0 and

S̄
c

(x̄
d

;�) = 0 iif x̄
d

2 S
e

. Now that all the conditions in Theorem 3.2 are satisfied, it is

proven by Theorem 3.2 that the dynamic policy v⇤
d

(x̄
d

;�) is the optimal admissible policy

with respect to the performance index (3.13) and the extended subspace S
e

, and Q⇤
d

(x̄
d

;�)

is the corresponding optimal value function, the completion of the proof.
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D.4 Proof of Theorem 5.1

Notice that by Theorem 5.3, the I-PI on the ROAs (Algorithm 5.1) and the ideal PI

(Algorithm 3.1) generate the same sequence (V
ui ,ui

) that converges to the optimal solution

(V ⇤,u⇤) under the conditions in Theorem 3.6. Hence, by Corollary 3.6, for each i 2 Z
+

,

1. u
i

is admissible on its ROA R
A

(u
i

);

2. R
A

(u
i

) is the invariant subset of R
A

(u
i+1

), i.e.,

z 2 R
A

(u
i

) =)

8

>

>

<

>

>

:

x
⌧

(z;u
i+1

,0
m

) 2 R
A

(u
i

) 8⌧ � t,

lim
⌧!1 x

⌧

(z,u
i+1

,0
m

) = 0
n

;

(D.8)

3. each V
ui is the unique solution to the Hamiltonian equation:

(rV
ui(x))

T (f(x) +G(x)u
i

(x)) = �r(x,u
i

(x)). (D.9)

over the function space C1

L

+(ui

).

So, di↵erentiating V
ui(x) along the trajectory x(z;u

i+1

, e) and substituting 2R(x)u
i+1

=

GT (x)rV
ui(x) and (D.9) yields

V̇
ui(x) = (rV

ui(x))
T

�

f(x) +G(x)[u
i+1

(x) + e]
�

= �r(x,u
i

)� 2uT

i+1

R(x)e� 2uT

i+1

R(x)(u
i+1

� u
i

).

Applying Young’s inequality 2xTR(x)y  xTR(x)x+ yTR(x)y for x,y 2 Rm, we obtain

V̇
ui(x)  �S(x) + eTR(x)e. (D.10)

Notice that S(x) satisfies (3.17) for r
s

> 0 such that B̄
0n(rs) ⇢ D; V

ui(x) satisfies (3.16)

with u = u
i

for r
ui > 0 satisfying B̄

0n(rui) ⇢ R
A

(u
i

). Since R
A

(u
i

) ✓ D holds by its

definition, one can choose r
s

such that 0 < r
ui  r

s

holds. Hence, using ↵
s

(kxk)  S(x)
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and V
ui(x)  ↵̄ui(kxk), one obtains from the inequality (D.10)

V̇
ui  �(1� ✓)S(x)� ✓ · ↵̂

�

V
ui(x)

�

+

✓

sup
x2D

�
1

(R(x))

◆

·
✓

sup
t⌧<1

ke
⌧

k2
◆

,

where ↵̂ := ↵
s

� ↵̄�1

ui
; ✓ 2 (0, 1) is a constant satisfying

sup
t⌧<1

ke
⌧

k2 < ✓ · ↵̂�d
i

� ·
✓

sup
x2D

�
1

(R(x))

◆�1

(D.11)

for d
i

:= ↵̄
ui(rui). Since we assume the exploration e satisfies (5.8), such ✓ always exists

in (0, 1). Also notice that ↵̂ = ↵
s

� ↵̄�1

ui
is a class K function defined on [0, d

i

]. This is

because we assume 0 < r
ui  r

s

without loss of generality, and the inverse ↵̄�1

ui
(r) is a

class K function defined for r 2 [0, d
i

] by [32, Lemma 4.2]. Therefore, we have

V̇
ui(x)  �(1� ✓)S(x), (D.12)

for all x 2 R
A

(u
i

) satisfying V
ui(x) � r

i

, where r
i

is given by

r
i

⌘ ↵̂�1

 

✓�1 ·
✓

sup
x2D

�
1

(R(x)

◆

·
✓

sup
t⌧<1

ke
⌧

k2
◆

!

(D.13)

and satisfies “r
i

< d
i

” by (D.11). Here, r
i

< d
i

and (D.12) imply that V̇
ui(x) is negative

definite on the compact subset ⌦̄I(ui

; r
i

, d
i

) given by

⌦̄I(ui

; r
i

, d
i

) :=
�

x 2 D : r
i

 V
ui(x)  d

i

 

.

Hence, we have V̇
ui < 0 on the boundary @⌦̄I(ui

; 0, d
i

), implying that the state trajectory

x
⌧

(z;u
i+1

, e) starting at any z 2 ⌦̄I(ui

; 0, d
i

) at time t > 0 stays in ⌦̄I(ui

; 0, d
i

) for all

⌧ � t. That is, e is invariant on ⌦̄I(ui

; 0, d
i

) ⌘ ⌦̄I(ui

; d
i

).

Next, applying (3.16) and (3.17) to (D.12) to prove ISS, we obtain

V̇
ui(x⌧

)  �(1� ✓)↵̂(V
ui(x⌧

)) (D.14)

 �(1� ✓)↵̂(r
i

) ⌘ �k < 0 (D.15)
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for all x
⌧

2 ⌦̄I(ui

; r
i

, d
i

). Hence, (D.15) and the invariance of e on ⌦̄I(ui

; r
i

, d
i

) imply

that for any z 2 ⌦̄I(ui

; r
i

, d
i

), there is t0 > t such that

8

>

>

<

>

>

:

x
⌧

(z,u
i+1

, e) 2 ⌦̄I(ui

; r
i

, d
i

) for all ⌧ 2 [t, t+ t0),

x
⌧

(z,u
i+1

, e) 2 ⌦̄I(ui

; 0, r
i

) for all ⌧ � t+ t0,

Assume ↵̂(·) is locally Lipshitz without loss of generality2 and let v
⌧

be the solution to

the scalar di↵erential equation

v̇
⌧

= �(1� ✓)↵̂(v
⌧

)

under the initial condition v(t) = V
ui(z). Then, [32, Lemma 3.4 and Lemma 4.4] and

(D.14) show that there is �
v

2 KL, defined on [0, d
i

]⇥ [0,1), such that

V
ui(x(⌧))  v(⌧) = �

v

�

V
ui(z), ⌧ � t

�

,

for any initial condition z 2 ⌦̄I(ui

; r
i

, d
i

) and all ⌧ 2 [t+ t0). Therefore, using (3.16) yields

the following inequality:

↵
ui

�kx
⌧

k�  V
ui(x⌧

)  �
v

�

V
ui(z), ⌧ � t

�

 �
v

�

↵̄
ui(kzk), ⌧ � t

� ⌘ �(kzk, ⌧ � t
�

, (D.16)

where �(y, s) ⌘ �
v

�

↵̄
ui(y), s

�

is of class KL by [32, Lemma 4.2]. On the other hand, for

all x
⌧

2 ⌦̄I(ui

; 0, r
i

), we have V
ui(x⌧

)  r
i

, and from (3.16) and (D.13),

↵
ui

�kx
⌧

k�  ↵
✓

sup
ts<1

ke(s)k
◆

, (D.17)

where ↵(y) ⌘ ↵̂�1

⇣

y2 · �✓�1 · sup
x2D �1(R(x))

�

⌘

is of class K [32, Lemma 4.2].

2See the proof of [32, Theorem 4.9].
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Finally, (D.16) and (D.17) imply that for all z 2 ⌦̄I(ui

; d
i

) and all ⌧ � t, the trajectory

x
⌧

(z;u
i+1

, e) satisfies the inequality

�
�kx

⌧

k�  max

(

�
�kzk, ⌧ � t

�

, ↵

✓

sup
ts<1

ke(s)k
◆

)

(D.18)

under (5.8), where �(·) := ↵
ui(·) is of class K. Here, instead of [t,1), the supremum on

the right hand side can be chosen over [t, ⌧ ] since x
⌧

depends only on e(s) for t  s  ⌧ .

This completes the proof of the local ISS theorem under u
i+1

. In the case of u
i

, one can

establish the inequality (D.10) by di↵erentiating V
ui(x) along the trajectory x

⌧

(z;u
i

, e)

and then substituting (D.9). Then, following the procedure of the proof of the case u
i+1

above, one obtains the same results.

D.5 Sketch of Proof of Theorem 6.2.

The proof starts by showing that S̄
d

and Q⇤
d

in Section 3.2 are represented as Q⇤
d

(ē
s

;�) =

ēT
s

Q
d

(v;�)ē
s

and S̄
d

(ē
s

;�) = ēT
s

S̄
d

(ē
s

;�)ē
s

. This can be easily verified as follows.

Q⇤
d

(ē
s

;�) =�eT⇧e+ 2eT⇧B⌦
v2

w + �wTD2

v

w

=ēT
s

Q
d

(v;�)ē
s

S̄
d

(ē
s

;�) =� eT⇥e+wT⌃(ē
s

;�)w � 2wT (B⌦
v2

)T⇧A⌦
s

e� 2eT⇧⌅(ē
s

)(A⌦
s

e+B⌦
v2

w)

=ēT
s

S̄
d

(ē
s

;�)ē
s

.

The next step is to show that there is �
Q

> 0 such that for all v 2 R2N and all � � �
Q

,

Q
d

(v;�) is positive semi-definite and rankQ
d

(v;�) = 5N�2. For this, consider the matrix

decomposition ⇧̄ := ŪT⇧Ū, where Ū := U⌦ I
4

, and U is the orthogonal matrix given in

Corollary C.1. Then, the structure of ⇧, Corollary C.1, and the operations of the Khatri-

Rao products in Appendix A show that ⇧̄ can be represented as ⇧̄ = diag{0
2⇥2

,P}
for some positive definite matrix P 2 R(4N�2)⇥(4N�2). Now, revoking the Schur com-

plement lemma (Lemmas B.1 and B.2), we know that Q
d

is positive semi-definite and
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rankQ
d

= 5N �2 iif �D
v

is positive definite, which is obvious under Assumption 6.1, and

S(Q
d

) is positive semi-definite with rankS(Q
d

) = 4N�2. Here, S(Q
d

), the Schur comple-

ment of Q
d

(see Appendix B), is given by S(Q
d

) = �⇧� ��1⇧B⌦
v2

D�2

v

(B⌦
v2

)T⇧, where

B⌦
v2

D�2

v

(B⌦
v2

)T is bounded under Assumption 6.1 since it consists of only the products of

cos ✓
i

and sin ✓
i

(i 2 N ). Now, the operations of Khatri-Rao products in Appendix A, the

definitions of the matrices, and ⇧̄ = diag{0
2⇥2

,P} prove that its similarity transforma-

tion

ŪTS(Q
d

)Ū = �⇧̄� 1

�
⇧̄ŪTB⌦

v2

D2

v

(B⌦
v2

)T Ū⇧̄

can be compactly rewritten as ŪTS(Q
d

)Ū = diag{0
2⇥2

,�P̄ � Ȳ(v)} for some positive

defininte matrix P̄ and some bounded positive semi-definite matrix Ȳ(v). Then, since

Ȳ(v) is bounded and P̄ is positive definite, there exists �
Q

> 0 such that for all � � �
Q

,

�P̄� Ȳ(v) is positive definite for all v 2 R2N . For such �, S(Q
d

) is positive semi-definite

with its rank 4N � 2, which proves that so is Q
d

(v;�) for � � �
Q

with its rank 5N � 2.

Notice that the nullities of S(Q
d

) and ⇧ are ‘2’ for � � �
Q

and that e 2 ker⇧

implies e 2 ker (B⌦
v2

)T⇧ for all v 2 R2N . Hence, the application of Lemma B.3 proves

kerQ
d

(v;�) = S
e

8v 2 R2N 8� � �
Q

. Here, the stabilizing subspace S
e

satisfies

S
e

=
�

ē
s

= (e,w) 2 R5N : e 2 ker⇧ and w ⌘ 0
N

 

.

This is because Definition 3.1 guarantees that the policy w⇤(x) satisfies w⇤(x) = 0
N

whenever x 2 S
e

. Finally, the application of Lemma 2.4 shows the existence of class K
functions ↵ and ↵̄ > 0 such that

↵(d(ē
s

, S
e

))  Q⇤
d

(ē
s

;�)  ↵̄(d(ē
s

, S
e

)) (D.19)

for all � � � and all ē
s

2 R5N .

Similarly to this, one can also show that for any r > 0, there is �
s

> 0 such that for
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the function S
d

(ē
s

;�), there exist class K functions � and �̄ such that

�(d(ē
s

, S
e

))  S̄
d

(ē
s

;�)  �̄(d(ē
s

, S
e

)) (D.20)

for all � � � and all ē
s

2 B̄Se(r). In this case, the term �⇥ in S̄
d

plays the same role to

�⇧ in Q
d

, and one can only show in this case that the terms in S̄
d

(ē
s

;�) are bounded

not globally, but only in a ball B̄Se(r), where r > 0 can be chosen arbitrarily. Though the

structure of S̄
d

(ē
s

;�) is more complicated and B̄Se(r) is non-compact, the boundedness of

all the terms in S̄
d

(ē
s

;�) can be shown using the structures and definitions of the matrices

and the algebra of Katri-Rao products shown in Appendix A. Then, for any given r > 0,

one can prove the existence of �
s

such that for all � � �
s

and all ē
s

2 B̄Se(r),

1. ⌃(ē
s

;�) is positive definite;

2. the Schur complement of S̄
d

, S(S̄
d

), is positive semi-definite with its rank 4N �2 by

the following expression of the transformed one:

ŪTS(S̄
d

)Ū = diag{0
2⇥2

,�P̄� Q̄(ē
s

;�)}, (D.21)

where P̄ is a positive definite matrix, and Q̄(ē
s

;�) is a symmetric matrix that is

bounded on B̄Se(r)⇥ [�
s

,1) ⇢ R5N .

Here, by the structures of S
d

, ⇧, and ⇥ with the property ker⇧ = ker⇥ in Lemma 6.2,

one can verify the expression (D.21). Moreover, ⇥, ⇧, S(S
d

) have the same nullity “2”

for � � �
s

and ē
s

2 B̄Se(r).

Let S̄
d11

and S̄T

d12

be the (1,1)- and (2,1)-th block elements of S
d

. That is,

S̄
d11

:= ⇥� (A⌦
s

)T⌅T⇧�⇧⌅A⌦
s

S̄T

d12

:= ��⇧⌅T + (B⌦
v2

)T⇧
�

A⌦
s

.

Then, since S̄
d11

= S(S̄
d

) + S̄
d12

⌃�1(ē
s

;�)S̄T

d12

⌫ S(S̄
d

) by the definition of the Schur

complement, S̄
d11

is also positive semi-definite, and its structure also show that S̄
d11

has
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the same nullity to S(S̄
d

) for all � � �
s

and ē
s

2 B̄Se(r). On the other hand, the following

can be established

x 2 ker⇧ =) x 2 kerS(S̄
d

(ē
s

;�)) and x 2 ker S̄
d11

(ē
s

;�), 8� � �
s

, 8ē
s

2 B̄Se(r)

from the definition of ⇥ and the kernel relation ker⇧ ⇢ kerA⌦
s

. Since the dimensions of

the null spaces of ⇧, S(S
d

), and S̄
d11

for all � � �
s

and all ē
s

2 B̄Se(r) are all same, the

converse of the statement is also true, so that we have

ker⇧ = kerS(S̄
d

(ē
s

;�)) = ker S̄
d11

(ē
s

;�), 8� � �
s

, 8ē
s

2 B̄Se(r).

Moreover, from this, ker⇧ ⇢ kerA⌦
s

, and the definition of S̄T

d12

, we easily obtain the kernel

relation S̄T

d11

✓ S̄T

d12

. Hence, the application of Lemma B.3 proves kerS
d

(ē
s

;�) = S
e

for

� � �
s

and ē
s

2 B̄Se(r), and we obtain (D.20) by the application of Lemma 2.4.

Finally, (D.19) and (D.20) guarantees that Assumption 3.3 in Theorem 3.3. Moreover,

since r > 0 can be arbitrarily chosen and Q⇤
d

(ē
s

�) is radially unbounded for � � �
Q

,

one can choose r > 0 such that B̄Se(r) contains a level set {Q⇤
d

(ē
s

�)  c} on which the

initial condition z lies. This choice yields the lower bound �
s

on � > 0 for (D.20), and the

application of Theorem 3.3 with � = max{�
Q

,�
s

} > 0 completes the proof.
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m 8 î }

ç‹⌅ Ÿ� ‹§\D ⌅\ �Ñ �TYµ¸ �Q Ì\� ⌧¥

¯Y⌅|8–⌧îç‹⌅Ÿ�‹§\D⌅\�Ñ�TYµ(integral reinforcement learn-

ing: IRL)¸ �Q Ì\� ⌧¥(adaptive inverse optimal control)– �\ l| ⇠â\‰.

tÏ\|(XlX\Ö©\î�¡Ÿ�‹§\–�\ƒ�\X¯X�Q\�⌧¥|‰

⌅Xî Ét‰. tÏ\ �Q\�⌧¥X ‰⌅@, ⌧¥ıY¸ 0ƒYµ Ñ|–⌧ 4 ‹⌅ŸH,

¯¨‡ ⌅¨–ƒ, ƒ⌅�x ¸⌧\ ®Dà‰.

�Ñ �TYµtÄ ¯¿X, 9@ ÄÑ�<\ L$¿¿ J@, ç‹⌅ Ÿ� ‹§\– �

\ \�⌧¥ ïYD �Ñ�‹X Ù¡D t©XÏ YµXî �TYµX |Öt‰. <�, ¯

|8–⌧î�Ñ�E⇠ıï(integral policy iteration),4\å|⇠�E⇠ıï(infinitesimal

GPI), �Ñ …�X ⇠ıï(integral value iteration), ¯¨‡ t‰D ®P Ï⌅Xî �Ñ |

⇠�E⇠ıï(integral generalized policy iteration)Ò¸⇡@‰ë\�®x≈Ω�(partially

model-free) IRL–�tå⌧X‡,t|Ñ�\‰.⇠Y�Ñ�Dµtt‰)ï–�\»\

¥ ÑXïD ⌧‹X‡, –Ë⌅ H�ƒ@ Ëp⇠4 ptD ⌧‹\‰. ‰L<\, �Ñ �E⇠ı

L‡¨ò0⇠<\,–…‡8XÄ���•D⌧p\–…T⌧(explorized)�Ñ�E⇠ıï

¸ ®x≈Ω�(model-free) IRL )ïx �Ñ Q-YµïD ⌧H\‰. ⌧H⌧ )ï‰@ H�\

¡‹ı⌅�ÌD–…Xt⌧�|¯0‰D1‡`⇠à<p,t|µt¯¿XD �\�⌧

¥8⌧– �\ îËXD ‰‹⌅<\ ƒú` ⇠ à‰. »¿…<\, ⇠Y� Ñ�¸ ®X‰ÿD

µt ⌧H⌧ 0ïX 1•¸ t`� 1¸| \Ö Äù\‰.

�Q Ì\� ⌧¥– �\ l–⌧î, ç‹⌅ Ÿ� ‹§\ ®xD �î ‰⇠ tŸ\⌥
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– �\ ⌘≈ ¯ò⌅ �� ⌧¥8⌧ (cooperative graphical formation control problem)|

‡$\‰. Ï0⌧ tŸ\⌥X 0lY(kinematics)@ ŸÌY(dynamics)@ Ì\� |X⌧¥@

�QïYX ≈Ω� $ƒ| ⌅\ |X⌧¥ $(@ ŸÌY ®x\ ¿X⌧‰. ⌧H⇠î 0ï@

\�1¸ �Q1D hÿ ‡$\ $ƒï<\, Ì\� 2( |X⌧¥ )ï, Ì\� Ÿ� Ö%

U•0ï, Lyapunov h⇠ 0⇠ �QïY $ƒï ÒX îå0 X ⌧⌧ ✏ ∞iD µt ƒú

⌧‰.¯⌧¥t`�⌘¸ï–Xt$ƒ⌧¯ò⌅��⌧¥0ï@,¸¥ƒµ‡†Ù\¿–

�\ Ì\�1D ¸¨�<\ ⌧ı\‰. ⇣\, Lyapunov@ Hamiltonian Ñ�D µt H�ƒ

@ �|¯0 ⇠41, Ì\�1D ⇠Y�<\ Ùtp, ®X‰ÿD µt ⌧H⌧ )ïX 1•¸

t`� ∞¸‰D ‰ë\ ‹ò¨$– �t \Ö Äù\‰.

uÏ⇠î –: �Q\�⌧¥, �Ñ �TYµ, �Q Ì\� ⌧¥, ç‹⌅, Ÿ� ‹§\,

�Ñ �E⇠ıï, �Ñ |⇠�≠⇠ıï, �Ñ Q-Yµï, tŸ\⌥, ¯ò⌅

��⌧¥, |X⌧¥, ‰⌧¥ ‹§\, \�1, Ì\�1, H�ƒ, ⇠41
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