

WISEMOVE: A Framework to Investigate Safe Deep Reinforcement Learning for Autonomous Driving

Jaeyoung Lee, Aravind Balakrishnan, Ashish Gaurav, Krzysztof Czarnecki, Sean Sedwards

> University of Waterloo September, 14th, 2019

WISEMOVE?

► A research platform that mimics our autonomous driving stack.

 Objective: investigate the safety and performance of motion planners trained using deep reinforcement learning

- ► Features:
 - ✓ Hierarchical Decision Making
 - ✓ Runtime Verification
 - ✓ Reinforcement Learning / Monte Carlo Tree Search (MCTS)

Motion Planning Architecture in 100 km Public Drive (2018)

Training & Testing Low-level Deep Models

- ► Five Deep Models one for each Option.
- Each model
 - \checkmark outputs continuous control commands generating the trajectories
 - \checkmark was trained by reinforcement learning (DDPG) with
 - ✓ 20 sec. timeout
 - \checkmark (additional) preconditions and, if necessary, traffic rules.

After 100,000 steps training ...

After 100,000 steps training ...

After 1,000,000 steps training ...

Training & Testing High-level Deep Model

- Each low-level deep model is trained a priori for 1,000,000 steps.
- One deep model, trained by reinforcement learning (DQN), outputs an Option.
- ▶ 1 sec. time-out for each option; 20 sec. time-out for an entire episode.

Training & Testing High-level Deep Model

Ove	erall performance (after 200,000 steps training)						
	success	LTL violation	collision				
	92.0(2.0)	5.40(1.9)	2.60(1.6)				
	(averaged over 1000 episodes)						

With MCTS over Options ...

Overall performance

Without MCTS			With MCTS		
success	LTL violation	collision	success	LTL violation	collision
92.0 (2.0)	5.40(1.9)	2.60(1.6)	98.5(1.5)	0.9 (0.9)	0.6(0.8)

(averaged over 1000 episodes)

Concluding Remarks

► Features:

Options / Reinforcement Learning / Runtime Verification / Monte Carlo Tree Search (MCTS)

► The results are reproducible using the publicly available code at

git.uwaterloo.ca/wise-lab/wise-move/

Future works

✓ Comparisons of RL and hand-coded motion planners.

✓ Different scenarios, realistic vehicle dynamics, etc.

✓ Simulation-to-Real

Thank you for attention! Q & A

Acknowledgment

This work is supported by the Japanese Science and Technology agency (JST) ERATO project JPMJER1603: HASUO Metamathematics for Systems Design, and by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant: Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles.