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WISEMOVE?

‣ A research platform that mimics our autonomous driving stack.
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‣ Objective: investigate the safety and performance of motion planners 

trained using deep reinforcement learning

‣ Features: 

✓ Hierarchical Decision Making 

✓ Runtime Verification 

✓ Reinforcement Learning / Monte Carlo Tree Search (MCTS)
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Motion Planning Architecture in 100 km Public Drive (2018)
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(w/o MCTS)
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Option

Deep models are trained by  
deep reinforcement learning.
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Deep Model  
for Trajectory Generation

Deep Model 
for Decision Making

Option

‣Five Options:  

KeepLane,  Stop,  Wait,  Follow,  ChangeLane 

‣Components

✓ preconditions
‣ Two “two-lane and one-way” roads 

‣ All-ways stop implemented by the stop region 

‣ 0~5 other vehicles

Road Scenario
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(w/o MCTS)Motion Planner

G((has_stopped_in_stop_region 
           and in_stop_region) U highest_priority)

✓ time-out (e.g., 1 sec.)

✓ speed limit, target lane

, e.g., in an option ‘Wait’,



Deep Model  
for Trajectory Generation

Deep Model 
for Decision Making

Runtime Verifier

G((has_stopped_in_stop_region 
           and in_stop_region) U highest_priority)

‣Checks LTL-like strings until violated.

G(in_stop_region =>  
    (in_stop_region U has_stopped_in_stop_region))

‣ An episode ends when: 

✓ Ego reaches the right end on the road, 
✓ a traffic rule is violated, or 
✓ a collision happens.
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Road Scenario
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(w/o MCTS)Motion Planner

✓preconditions, e.g., in an option ‘Wait’,

✓ traffic-rules, e.g., in a stop region,



Deep Model 
for Decision Making

Deep Model  
for Trajectory Generation

Input: a state representation 
Output: the learnt ‘best’ Option

Option
(high-level decision)

Next Option?

‣Act upon the termination of the current Option.

WISEMOVE Architecture
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(w/o MCTS)Motion Planner

‣Choose the ‘best’ Option.



Deep Model  
for Trajectory Generation

Input: a state representation (simplified) 
Output: reference trajectories, given an Option

Option
(high-level decision)

‣A deep model is stored for each Option.

WISEMOVE Architecture
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Deep Model 
for Decision Making

Next Option?

(w/o MCTS)Motion Planner

‣Trajectories generated with simplified vehicle model.
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8

Deep Model  
for Trajectory Generation

Deep Model 
for Decision Making

Next Option?
time

Follow

Stop
Wait

KeepLane

reference trajectory “____”

To the road scenario

(w/o MCTS)Motion Planner

Option “    ”
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Deep Model  
for Trajectory Generation

reference trajectory “____”

Training & Testing Low-level Deep Models

✓ was trained by reinforcement learning (DDPG) with 

✓ 20 sec. timeout 

✓(additional) preconditions and, if necessary, traffic rules.

Option “    ”

‣Five Deep Models —one for each Option.

‣Each model  

✓outputs continuous control commands generating the trajectories



After 100,000 steps training …
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After 100,000 steps training …
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mean (std) % success after 100,000 training

(averaged over 100 trials of 100 episodes)
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After 1,000,000 steps training …
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‣Each low-level deep model is trained a priori for 1,000,000 steps.

Training & Testing High-level Deep Model

Deep Model  
for Trajectory Generation

Deep Model 
for Decision Making

Next Option?
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reference trajectory “____”

To the road scenario

(w/o MCTS)Motion Planner

Option “    ”

‣One deep model, trained by reinforcement learning (DQN), outputs an Option.

‣1 sec. time-out for each option; 20 sec. time-out for an entire episode.
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Overall performance (after 200,000 steps training)

(averaged over 1000 episodes)

Training & Testing High-level Deep Model
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With MCTS over Options …
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Overall performance

(averaged over 1000 episodes)
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‣ The results are reproducible using the publicly available code at

‣ Future works 

✓ Comparisons of RL and hand-coded motion planners. 

✓ Different scenarios, realistic vehicle dynamics, etc. 

✓ Simulation-to-Real

Concluding Remarks

git.uwaterloo.ca/wise-lab/wise-move/

‣ Features: 

Options / Reinforcement Learning / Runtime Verification / Monte Carlo Tree Search (MCTS)
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Thank you for attention!
Q & A
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