

Non-divergent Imitation for Verification of Complex Learned Controllers

Vahdat Abdelzad*, Jaeyoung Lee*, Sean Sedwards*, Soheil Soltani*, Krzysztof Czarnecki

University of Waterloo, Canada

* contributed equally

Presented at IJCNN, 2021

Introduction

Machine learning solves complex sequential decision-making tasks

but solutions are often opaque / difficult to formally verify

• Our primary focus:

► Bounded model checker verifies temporal properties of system controlled by $\hat{\pi}$ E.g. in CartPole — "pole angle always $\leq 10^{\circ}$ within 100 execution steps from any initial state"

Motivating Example: CartPole with a DQN Oracle π^*

• Accuracy of behavioural cloning \gg accuracy of Dagger / Viper (especially in early execution steps)

- For bounded verification, accuracy in the early execution steps is critical (e.g. ≤ 40)
- Bounded behavioural cloning

trains the solution $\hat{\pi}$ on states from executions only up to 40 steps

performs the best in early steps \rightarrow Idea: limit training data up to reasonable execution steps

Markov Decision Process

• $(\mathcal{S}, \mathcal{A}, d, \mathcal{P})$ where

state space \mathcal{S}

finite action space \mathscr{A}

initial state distribution d

next-state distribution $\mathscr{P}(s, a)$, given current state $s \in \mathscr{S}$ and action $a \in \mathscr{A}$

• Finite path $\tau \equiv \tau^{\pi^*} = s_1 a_1 s_2 a_2 \cdots s_t a_t$ generated by oracle $\pi^* : \mathcal{S} \to \mathcal{A}$

where the path length $|\tau| := t \in \mathbb{N}$

Fidelity Issue

Errors in the early execution steps can generate totally different paths thereafter

In this case, $\begin{cases} \langle \text{verification of distilled solution } \hat{\pi} \rangle \neq \langle \text{verification of oracle } \pi^* \rangle \\ \text{accuracy at states } s_4, s_5, s_6 \cdots \text{ is meaningless} \end{cases}$

Accuracy is NOT a sufficient metric for verification

Non-divergent Path Length (NPL)

Definition:

$$l(\pi | \tau) := \max \left\{ t \in \{0, 1, 2, \dots, |\tau|\} \mid t = 0 \text{ or } \pi(s_n) = a_n \ \forall 1 \le n \le t \right\}$$

In this example, $l(\hat{\pi} \mid \tau) = 2$ \implies the higher, the better

• Statistics of $l(\hat{\pi} | \tau)$ are suitable metrics to judge behavioural fidelity of $\hat{\pi}$ w.r.t. π^*

NPL Maximization

 $\Pi := \langle \text{class of verifiable policies, to be optimized} \rangle$

• Find a solution $\hat{\pi} \in \Pi$ maximizing the expected NPL over Π :

$$\hat{\pi} \in \arg\max_{\pi \in \Pi} \mathbb{E} \Big[l(\pi \mid \tau) \Big]$$

Let
$$\begin{cases} \ell(\pi \mid \tau) := \sum_{t=1}^{|\tau|} \mathbf{1} [a_t = \pi(s_t)] & \text{(pathwise similarity)} \\ \tau_{1:t} := s_1 a_1 s_2 a_2 \cdots s_t a_t & \text{(path } \tau \text{ up to } t \text{ execution steps)} \end{cases}$$

Lemma $l(\pi | \tau) = \ell(\pi | \tau_{1:l(\pi | \tau)})$

The NPL maximization is equivalent to

$$\hat{\pi} \in \arg\max_{\pi \in \Pi} \mathbb{E} \Big[\ell(\pi \,|\, \tau_{1:\ell(\pi|\tau)}) \Big]$$

NPL Maximization

The NPL maximization is equivalent to

$$\hat{\pi} \in \arg\max_{\pi \in \Pi} \mathbb{E} \Big[\ell(\pi \,|\, \tau_{1:\ell(\pi|\tau)}) \Big] = \arg\max_{\pi \in \Pi} \mathbb{E} \Big[\ell(\pi \,|\, \tau_{1:\ell(\pi|\tau)+1}) \Big]$$

Lemma
$$\ell(\pi | \tau_{1:\ell(\pi | \tau)}) = \ell(\pi | \tau_{1:\ell(\pi | \tau) + 1})$$

• Our proposal, Non-Divergent Imitation (NDI), is designed in a way that its fixed point π_{\bullet} (if it exists) approximately satisfies

$$\pi_{\bullet} \in \arg \max_{\pi \in \Pi} \mathbb{E} \Big[\ell(\pi \,|\, \tau_{1:\ell(\pi|\tau)+1}) \Big]$$

Non-Divergent Imitation (NDI)

- An iterative algorithm: for each iteration $i = 1, 2, 3, \cdots$
- ► Key idea:

Consider paths up to "non-divergent prefixes + 1" w.r.t. π_{i-1} (previous policy)

Non-Divergent Imitation (NDI)

• Procedure at each iteration $i = 1, 2, 3, \cdots$

(1) Consider paths up to "non-divergent prefixes + 1" w.r.t. π_{i-1} (previous policy)

E.g.
$$\tau_{1:3} = s_1 a_1 s_2 a_2 s_3 a_3$$
, $\tau' = s'_1 a'_1 s'_2 a'_2$, ...

(2) Construct dataset *D* from all those paths

E.g.
$$D = \{(s_1, a_1), (s_2, a_2), (s_3, a_3)\} \cup \{(s'_1, a'_1), (s'_2, a'_2)\} \cup \cdots$$

Input Output

(3) Train the next verifiable policy π_i on D

$$\Rightarrow \pi_i \in \arg \max_{\pi \in \Pi} \mathbb{E} \Big[\ell(\pi | \tau_{1:\ell(\pi_{i-1}|\tau)+1}) \Big] \text{ (approximately)}$$

where π_0 is the oracle π^*

Experiments – Pong

Pixel-based traditional computer game

Used in related literature, with state abstraction

Treated as a dynamical system, with

state space $\mathcal{S} = \mathbb{Z}^7$ (abstracted / extracted from pixel images)

action space $\mathscr{A} = \{ NoOp, Fire, Right, Left, RightFire, LeftFire \}$

• Train decision tree policies $\pi_1, \pi_2, \dots, \pi_{40}$ (with tree depth ≤ 12)

NDI vs BC

Non-Divergent Imitation (NDI)

Trained on "non-divergent prefixes + 1"

Behavioural Cloning (BC)

Trained on the same # of data in D, but obtained from entire rollouts

Expected NPL vs Iteration

- Statistics are w.r.t. 50 repetitions
- Expected NPL estimated with 20000 rollouts

➡ NDI keeps increasing expected NPL!

Expected NPL vs Generated Data

- Statistics are w.r.t. 50 repetitions
- Expected NPL estimated with 20000 rollouts

➡ NDI is more data-efficient!

Number of Nodes vs Iteration

Statistics are w.r.t. 50 repetitions

➡ NDI produces more compact models!

Conclusion

- Contributions
 - 1. New Concept: Non-divergent Path Length (NPL)
 - $\checkmark\,$ A metric for behavioural fidelity of distilled models for verification
 - 2. Algorithm: Non-Divergent Imitation (NDI)
 - ✓ Achieves higher expected NPL than the state-of-the-art

- Challenges
 - 1. Divergent dynamics
 - 2. Aleatoric uncertainty (e.g. in Pong)