
Non-divergent Imitation for
Verification of Complex Learned Controllers

Vahdat Abdelzad*, Jaeyoung Lee*, Sean Sedwards*, Soheil Soltani*, Krzysztof Czarnecki

University of Waterloo, Canada

Presented at IJCNN, 2021* contributed equally

Introduction

‣ Machine learning solves complex sequential decision-making tasks

1

‣ Our primary focus:

but solutions are often opaque / difficult to formally verify

Distill a learned controller into a verifiable structure such as a decision tree

‣ Bounded model checker verifies temporal properties of system controlled by ̂π

oracle π* solution ̂π

E.g. in CartPole — “pole angle always 10 within 100 execution steps from any initial state”≤ ∘

2
Motivating Example: CartPole with a DQN Oracle π*

Average error rate (1−accuracy) of the solution
w.r.t. the oracle , up to a given execution step

̂π
π*

Averages over 10 distillations
10000 rollouts used to estimate errors

‣ Bounded behavioural cloning

trains the solution on states from executions only up to 40 steps

performs the best in early steps

̂π

➡ Idea: limit training data up to reasonable execution steps

‣ For bounded verification, accuracy in the early execution steps is critical (e.g.)≤ 40

‣ Accuracy of behavioural cloning accuracy of Dagger / Viper≫ (especially in early execution steps)

Markov Decision Process
3

‣ where

state space

finite action space

initial state distribution

next-state distribution , given current state and action

(𝒮, 𝒜, d, 𝒫)

𝒮

𝒜

d

𝒫(s, a) s ∈ 𝒮 a ∈ 𝒜

‣ Finite path generated by oracle τ ≡ τπ* = s1a1s2a2⋯stat π* : 𝒮 → 𝒜

st−1 ∼ 𝒫(st−2, at−2)

at−1 = π*(st−1)
a1 = π*(s1)

a2 = π*(s2)
at = π*(st)

st ∼ 𝒫(st−1, at−1)
. . .

s1 ∼ d s2 ∼ 𝒫(s1, a1)
s3 ∼ 𝒫(s2, a2)

where the path length |τ | := t ∈ ℕ

4
Fidelity Issue

‣ Errors in the early execution steps can generate totally different paths thereafter

a2
a3 = π*(s3)s1

s2
s4

s′ 4

a′ 3 = ̂π(s3) a′ 4 = ̂π(s′ 4)

̂π(s3) ≠ π*(s3)

s′ 5

non-divergent prefix

a4 = π*(s4)

s5

a1

s3

➡

divergent suffix➡

. . .

. . .

In this case,
verification of distilled solution verification of oracle

accuracy at states , , is meaningless

⟨ ̂π⟩ ≠ ⟨ π*⟩
s4 s5 s6 ⋯

➡ Accuracy is NOT a sufficient metric for verification

5
Non-divergent Path Length (NPL)

‣ Definition:

ł (π |τ) := max {t ∈ {0, 1, 2, ⋯, |τ |} t = 0 or π(sn) = an ∀1 ≤ n ≤ t}

In this example, ł (̂π |τ) = 2

‣ Statistics of ł are suitable metrics to judge behavioural fidelity of w.r.t. (̂π |τ) ̂π π*

➡ the higher, the better

a2
a3 = π*(s3)s1

s2
s4

s′ 4

a′ 3 = ̂π(s3) a′ 4 = ̂π(s′ 4)

̂π(s3) ≠ π*(s3)

s′ 5

non-divergent prefix

a4 = π*(s4)

s5

a1

s3

➡

divergent suffix➡

. . .

. . .

6
NPL Maximization

‣ Find a solution maximizing the expected NPL over :̂π ∈ Π Π

ł̂π ∈ arg max
π∈Π

𝔼[(π |τ)]

 class of verifiable policies, to be optimizedΠ := ⟨ ⟩

‣ The NPL maximization is equivalent to

 ł̂π ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ))]

Lemma ł ł(π |τ) = ℓ(π |τ1: (π|τ))

 (pathwise similarity)ℓ(π |τ) := ∑|τ|
t=1 1[at = π(st)]

 (path up to execution steps)τ1:t := s1a1s2a2⋯stat τ t
Let

7

‣ The NPL maximization is equivalent to

Lemma ł łℓ(π |τ1: (π|τ)) = ℓ(π |τ1: (π|τ) + 1)

 ł̂π ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ))] ł= arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ) + 1)]

‣ Our proposal, Non-Divergent Imitation (NDI), is designed in a way that

its fixed point (if it exists) approximately satisfies π∙

NPL Maximization

 łπ∙ ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ) + 1)]

8
Non-Divergent Imitation (NDI)

‣ Key idea:

 Consider paths up to “non-divergent prefixes + 1” w.r.t. (previous policy)πi−1

πi−1(s3) ≠ π*(s3)

non-divergent prefix

a2
a3 = π*(s3)s1 ∼ d

s2
s4

a′ 3 = πi−1(s3)

a4 = π*(s4)

s5

a1

s3

a5 = π*(s5)➡

➡

‣ An iterative algorithm: for each iteration i = 1, 2, 3,⋯

a3 = π*(s3)s1 ∼ d
s2

a′ 3 = πi−1(s3)

a1

s3

Generate / extend paths

τ = s1a1s2a2s3a3

Use existing paths

τ1:3 = s1a1s2a2s3a3

divergent suffix

a2

9
Non-Divergent Imitation (NDI)

(1) Consider paths up to “non-divergent prefixes + 1” w.r.t. (previous policy)πi−1

(2) Construct dataset from all those pathsD

(3) Train the next verifiable policy on πi D

where is the oracle π0 π*

➡ (approximately) łπi ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (πi−1|τ) + 1)]

‣ Procedure at each iteration i = 1, 2, 3,⋯

E.g. , , τ1:3 = s1a1s2a2s3a3 τ′ = s′ 1a′ 1s′ 2a′ 2 ⋯

E.g. (,), (,), (,)D = { s1 a1 s2 a2 s3 a3 }
Input Output

(,), (,) ∪{ s′ 1 a′ 1 s′ 2 a′ 2 }∪ ⋯

10
Experiments — Pong

‣ Pixel-based traditional computer game

‣ Used in related literature, with state abstraction

‣ Treated as a dynamical system, with

state space (abstracted / extracted from pixel images)

action space

‣ Train decision tree policies , , , (with tree depth)

𝒮 = ℤ7

𝒜 = {𝙽𝚘𝙾𝚙, 𝙵𝚒𝚛𝚎, 𝚁𝚒𝚐𝚑𝚝, 𝙻𝚎𝚏𝚝, 𝚁𝚒𝚐𝚑𝚝𝙵𝚒𝚛𝚎, 𝙻𝚎𝚏𝚝𝙵𝚒𝚛𝚎}

π1 π2 ⋯ π40 ≤ 12

11
NDI vs BC

πi−1(s3) ≠ π*(s3)

a2
a3 = π*(s3)s1

s2
s4

a4 = π*(s4)
a1

s3

‣ Non-Divergent Imitation (NDI)

Trained on “non-divergent prefixes + 1”

‣ Behavioural Cloning (BC)

 Trained on the same # of data in , but obtained from entire rolloutsD

a′ 2 = π*(s′ 2)
s′ 1

s′ 2
a′ 1

πi−1(s′ 2) ≠ π*(s′ 2)

πi−1(s3) ≠ π*(s3)

a2
a3 = π*(s3)s1

s2
s4

a4 = π*(s4)
a1

s3
sT

aT = π*(sT)

➡ (,), (,), (,)D = { s1 a1 s2 a2 s3 a3 }

⋯

⋯⋯

➡ (,), (,), , (,)D = { s1 a1 s2 a2 ⋯ sT aT }

(,), (,) ∪{ s′ 1 a′ 1 s′ 2 a′ 2 }∪ ⋯

(,), , (,) ∪{ s′ 1 a′ 1 ⋯ s′ T a′ T }∪ ⋯

⊥

12
Expected NPL vs Iteration

‣ Expected NPL estimated with 20000 rollouts

‣ Statistics are w.r.t. 50 repetitions

➡ NDI keeps increasing expected NPL!

13
Expected NPL vs Generated Data

➡ NDI is more data-efficient!

‣ Expected NPL estimated with 20000 rollouts

‣ Statistics are w.r.t. 50 repetitions

14
Number of Nodes vs Iteration

‣ Statistics are w.r.t. 50 repetitions

➡ NDI produces more compact models!

15
Conclusion

‣ Challenges

1. Divergent dynamics

2. Aleatoric uncertainty (e.g. in Pong)

‣ Contributions

1. New Concept: Non-divergent Path Length (NPL)

✓ A metric for behavioural fidelity of distilled models for verification

2. Algorithm: Non-Divergent Imitation (NDI)

✓ Achieves higher expected NPL than the state-of-the-art

