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Introduction

‣ Machine learning solves complex sequential decision-making tasks
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‣ Our primary focus:

but solutions are often opaque / difficult to formally verify

Distill a learned controller into a verifiable structure such as a decision tree

‣ Bounded model checker verifies temporal properties of system controlled by ̂π

oracle π*  solution ̂π

E.g. in CartPole — “pole angle always  10  within 100 execution steps from any initial state”≤ ∘
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Motivating Example: CartPole with a DQN Oracle π*

Average error rate (1−accuracy) of the solution  
w.r.t. the oracle , up to a given execution step

̂π
π*

Averages over 10 distillations 
10000 rollouts used to estimate errors

‣ Bounded behavioural cloning  

trains the solution  on states from executions only up to 40 steps 

performs the best in early steps          

̂π

➡  Idea: limit training data up to reasonable execution steps

‣ For bounded verification, accuracy in the early execution steps is critical (e.g. )≤ 40

‣ Accuracy of behavioural cloning  accuracy of Dagger / Viper≫ (especially in early execution steps)



Markov Decision Process
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‣  where


state space 


finite action space 


initial state distribution 


next-state distribution , given current state  and action 

(𝒮, 𝒜, d, 𝒫)

𝒮

𝒜

d

𝒫(s, a) s ∈ 𝒮 a ∈ 𝒜

‣ Finite path   generated by oracle τ ≡ τπ* = s1a1s2a2⋯stat π* : 𝒮 → 𝒜

st−1 ∼ 𝒫(st−2, at−2)

at−1 = π*(st−1)
a1 = π*(s1)

a2 = π*(s2)
at = π*(st)

st ∼ 𝒫(st−1, at−1)
.  .  .

s1 ∼ d s2 ∼ 𝒫(s1, a1)
s3 ∼ 𝒫(s2, a2)

where the path length |τ | := t ∈ ℕ
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Fidelity Issue

‣ Errors in the early execution steps can generate totally different paths thereafter

a2
a3 = π*(s3)s1

s2
s4

s′ 4

a′ 3 = ̂π(s3) a′ 4 = ̂π(s′ 4)

̂π(s3) ≠ π*(s3)

s′ 5

non-divergent prefix

a4 = π*(s4)

s5

a1

s3

➡ 

divergent suffix➡ 

. . .

. . .

In this case, 
verification of distilled solution     verification of oracle  

accuracy at states , ,   is meaningless

⟨ ̂π⟩ ≠ ⟨ π*⟩
s4 s5 s6 ⋯

➡ Accuracy is NOT a sufficient metric for verification
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Non-divergent Path Length (NPL)

‣ Definition:

ł (π |τ) := max {t ∈ {0, 1, 2, ⋯, |τ |} t = 0  or  π(sn) = an ∀1 ≤ n ≤ t}

In this example, ł ( ̂π |τ) = 2

‣ Statistics of ł  are suitable metrics to judge behavioural fidelity of   w.r.t. ( ̂π |τ) ̂π π*

➡ the higher, the better

a2
a3 = π*(s3)s1

s2
s4

s′ 4

a′ 3 = ̂π(s3) a′ 4 = ̂π(s′ 4)

̂π(s3) ≠ π*(s3)

s′ 5

non-divergent prefix

a4 = π*(s4)

s5

a1

s3

➡ 

divergent suffix➡ 

. . .

. . .
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NPL Maximization

‣ Find a solution  maximizing the expected NPL over :̂π ∈ Π Π

ł̂π ∈ arg max
π∈Π

𝔼[ (π |τ)]

 class of verifiable policies, to be optimizedΠ := ⟨ ⟩

‣ The NPL maximization is equivalent to

 ł̂π ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ))]

Lemma  ł  ł(π |τ) = ℓ(π |τ1: (π|τ))

   (pathwise similarity)ℓ(π |τ) := ∑|τ|
t=1 1[at = π(st)]

     (path  up to  execution steps)τ1:t := s1a1s2a2⋯stat τ t
Let
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‣ The NPL maximization is equivalent to

Lemma   ł  łℓ(π |τ1: (π|τ)) = ℓ(π |τ1: (π|τ) + 1)

 ł̂π ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ))]  ł= arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ) + 1)]

‣ Our proposal, Non-Divergent Imitation (NDI), is designed in a way that 

its fixed point  (if it exists) approximately satisfies π∙

NPL Maximization

 łπ∙ ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (π|τ) + 1)]
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Non-Divergent Imitation (NDI)

‣ Key idea: 

 Consider paths up to “non-divergent prefixes + 1” w.r.t.  (previous policy)πi−1

πi−1(s3) ≠ π*(s3)

non-divergent prefix

a2
a3 = π*(s3)s1 ∼ d

s2
s4

a′ 3 = πi−1(s3)

a4 = π*(s4)

s5

a1

s3

a5 = π*(s5)➡ 

➡ 

‣ An iterative algorithm: for each iteration i = 1, 2, 3,⋯

a3 = π*(s3)s1 ∼ d
s2

a′ 3 = πi−1(s3)

a1

s3

Generate / extend paths

τ = s1a1s2a2s3a3

Use existing paths

τ1:3 = s1a1s2a2s3a3

divergent suffix

a2
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Non-Divergent Imitation (NDI)

(1) Consider paths up to “non-divergent prefixes + 1” w.r.t.  (previous policy)πi−1

(2) Construct dataset  from all those pathsD

(3) Train the next verifiable policy  on πi D

where  is the oracle π0 π*

➡                                                             (approximately) łπi ∈ arg max
π∈Π

𝔼[ℓ(π |τ1: (πi−1|τ) + 1)]

‣ Procedure at each iteration i = 1, 2, 3,⋯

E.g. ,  ,  τ1:3 = s1a1s2a2s3a3 τ′ = s′ 1a′ 1s′ 2a′ 2 ⋯

E.g. ( ,  ), ( ,  ), ( ,  )D = { s1 a1 s2 a2 s3 a3 }
Input Output

( ,  ), ( ,  )  ∪{ s′ 1 a′ 1 s′ 2 a′ 2 }∪ ⋯
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Experiments — Pong

‣ Pixel-based traditional computer game 

‣ Used in related literature, with state abstraction 

‣ Treated as a dynamical system, with 

state space        (abstracted / extracted from pixel images) 

action space  

‣ Train decision tree policies , , ,      (with tree depth )

𝒮 = ℤ7

𝒜 = {𝙽𝚘𝙾𝚙, 𝙵𝚒𝚛𝚎, 𝚁𝚒𝚐𝚑𝚝, 𝙻𝚎𝚏𝚝, 𝚁𝚒𝚐𝚑𝚝𝙵𝚒𝚛𝚎, 𝙻𝚎𝚏𝚝𝙵𝚒𝚛𝚎}

π1 π2 ⋯ π40 ≤ 12
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NDI vs BC

πi−1(s3) ≠ π*(s3)

a2
a3 = π*(s3)s1

s2
s4

a4 = π*(s4)
a1

s3

‣ Non-Divergent Imitation (NDI) 

Trained on “non-divergent prefixes + 1”

‣ Behavioural Cloning (BC) 

    Trained on the same # of data in , but obtained from entire rolloutsD

a′ 2 = π*(s′ 2)
s′ 1

s′ 2
a′ 1

πi−1(s′ 2) ≠ π*(s′ 2)

πi−1(s3) ≠ π*(s3)

a2
a3 = π*(s3)s1

s2
s4

a4 = π*(s4)
a1

s3
sT

aT = π*(sT)

➡ ( ,  ), ( ,  ), ( ,  )D = { s1 a1 s2 a2 s3 a3 }

⋯

⋯⋯

➡ ( ,  ), ( ,  ), , ( ,  )D = { s1 a1 s2 a2 ⋯ sT aT }

( ,  ), ( ,  )  ∪{ s′ 1 a′ 1 s′ 2 a′ 2 }∪ ⋯

( ,  ), , ( ,  )  ∪{ s′ 1 a′ 1 ⋯ s′ T a′ T }∪ ⋯

⊥
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Expected NPL vs Iteration

‣ Expected NPL estimated with 20000 rollouts

‣ Statistics are w.r.t. 50 repetitions

➡ NDI keeps increasing expected NPL!



13
Expected NPL vs Generated Data

➡ NDI is more data-efficient!

‣ Expected NPL estimated with 20000 rollouts

‣ Statistics are w.r.t. 50 repetitions
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Number of Nodes vs Iteration

‣ Statistics are w.r.t. 50 repetitions

➡ NDI produces more compact models!
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Conclusion

‣ Challenges 

1. Divergent dynamics 

2. Aleatoric uncertainty (e.g. in Pong)

‣ Contributions 

1. New Concept: Non-divergent Path Length (NPL) 

✓  A metric for behavioural fidelity of distilled models for verification 

2. Algorithm: Non-Divergent Imitation (NDI) 

✓ Achieves higher expected NPL than the state-of-the-art


