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Introduction
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‣ Given Markov decision processes and safety constraints


Find a policy  that is


deterministic


uniformly constrained optimal


‣ Motivations


Safety-critical systems e.g. autonomous driving


No adequate existing solution


‣ Main focus


1. instability issue with reinforcement learning 

2. solution: the idea of recursive constraints

̂π reaching a failure stateℙ( ) ≤ θ

safe and optimal  in each state possible


least unsafe         in each of the other states
i.e.



Finite Markov Decision Process (MDP)
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‣  where


(finite) state space       ( : set of all terminal states )


(finite) action space 


➡  set of all actions  available from 


next-state distribution , given action  at state 


discount rate 


reward model  

(𝒮+, 𝒜+, 𝒯, γ, ℛ)

𝒮+ = 𝒮 ∪ 𝒮⊥ 𝒮⊥

𝒜+

𝒜(s) : ∈ 𝒜+ s ∈ 𝒮+

𝒯(s, a) a ∈ 𝒜(s) s ∈ 𝒮

γ ∈ [0,1]

ℛ : 𝒮+ × 𝒜+ × 𝒮+ → ℝ

‣ A policy is mapping  such that      π : 𝒮+ → 𝒜+ π(s) ∈ 𝒜(s) ∀s ∈ 𝒮+
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‣ Given  (resp. )


policy  over an MDP generates


‣ Value and Q-functions of policy 





s ∈ 𝒮+ sa ∈ 𝒮+ × 𝒜(s)

π

π

V(s | π) := 𝔼(
T

∑
t=0

γt ⋅ rt s0 = s, π)
Q(s, a | π) := 𝔼(

T

∑
t=0

γt ⋅ rt s0a0 = sa, π)

sT−1 ∈ 𝒮

aT−1
a0

a1 aT

sT ∈ 𝒮⊥

.  .  .s0
s1 ∈ 𝒮 s2 ∈ 𝒮

r0

r1

rT−2

rT−1
rT = ℛ(sT, aT, sT)

⊥

 terminal index T : ≥ 0

and Value FunctionsStates, Actions, Rewards

 (resp. )  and   thereafter


  and    

s0 = s s0a0 = sa at = π(st)

st+1 ∼ 𝒯(st, at) rt = ℛ(st, at, st+1) ∀t < T
where



Probabilistic Reachability of Failure States
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‣ Let  be set of all failure states


‣ Given policy 


probabilistic reachability of  at state  and state-action 


  





‣ Given threshold 


partition the state space as  where


      (safe region) 

     (unsafe region)

ℱ⊥ ⊆ 𝒮⊥

π

ℱ⊥ s sa

P(s | π) := ℙ(sT ∈ ℱ⊥ s0 = s, π)
𝒫(s, a | π) := ℙ(sT ∈ ℱ⊥ s0a0 = sa, π)
θ ∈ [0, 1)

𝒮+ = S(π) ∪ F(π)

S(π) := {s ∈ 𝒮+ | P(s |π) ≤ θ}

F(π) := {s ∈ 𝒮+ | P(s |π) > θ}



Desired Properties of Constrained Optimality
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‣  assumed existent optimal policy satisfying P1—P4, associated with    


  and   


P1  Uniform Optimality    ➡ For any policy 


 


 


P2  Second Uniform Optimality over     ➡ For any policy  s.t.  over 


 


P3  Monotonicity    ➡ If , then 

̂π : θ

̂S := S( ̂π) ̂F := F( ̂π)

π

P(s |π) ≤ P(s | ̂π) ⟹ V(s |π) ≤ V(s | ̂π ) ∀s ∈ ̂S

V(s | ̂π) ≤ V(s |π) ⟹ P(s | ̂π) ≤ P(s |π ) ∀s ∈ ̂F

̂F π π = ̂π ̂S

P(s | ̂π) ≤ P(s |π) ∀s ∈ ̂F

ϑ ≤ θ

V(s | ̂πϑ ) ≤ V(s | ̂π ) ∀s ∈ ̂S

P(s | ̂πϑ ) ≤ P(s | ̂π ) ∀s ∈ 𝒮+



Desired Properties of Constrained Optimality
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‣ Policy iteration operator  where 


  

 


P4  Fixed Point Property    ➡  

(i) reasonable                           (ii) necessary for convergence


‣ However, we’ll show


1. non-existence of such a fixed point of 


2. mismatch between P1 and P4

𝒯(π) := π′ 

π′ (s) ∈
arg max
a∈𝒜(s | π)

Q(s, a | π)  if 𝒜(s | π) ≠ Ø

arg min
a∈𝒜(s)

𝒫(s, a | π)  otherwise

𝒜(s | π) := { a ∈ 𝒜(s) | 𝒫(s, a |π) ≤ θ }

𝒯( ̂π) = ̂π

𝒯
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Counter-MDP

‣ State space  

‣ Action space  

‣  determines transition probabilities 

𝒮+ = {𝖷, s1, s2, 𝖦}

𝒜 = {𝖫, 𝖱}

p > 0.5 𝒯(s, a)(s′ )

   (non-terminal states) 

  (terminal states) 

  (failure state)

𝒮 = {s1, s2}

𝒮⊥ = {𝖷, 𝖦}

ℱ⊥ = {𝖷}

 𝒜(s1) = {𝖫, 𝖱}

𝒜(s2) = {𝖱}   is not enabled at  for simplicity.𝖫 s2

p ∈ (0.5, 1]
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Counter-MDP

‣ Only two policies exist 

‣ Reward model :   with   

‣ We investigate  and  at state … 

             

           

ℛ(s, a, s′ ) = − 1(s ∉ 𝒮⊥) γ = 0.95

π𝖫 π𝖱 s1

Qa𝖫 := Q(s1, a |π𝖫) Qa𝖱 := Q(s1, a |π𝖱)

𝒫a𝖫 := 𝒫(s1, a |π𝖫) 𝒫a𝖱 := 𝒫(s1, a |π𝖱)

    —            

    —          

π𝖫 π𝖫(s1) = 𝖫 π𝖫(s2) = 𝖱

π𝖱 π𝖱(s1) = 𝖱 π𝖱(s2) = 𝖱

p ∈ (0.5, 1]



 vs Qa𝖱 p vs Qa𝖫 p
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Counter-MDP: Performance

➡  Choosing  at  clearly yields higher Q-values than 𝖫 s1 𝖱

   Q𝖱𝖫 < Q𝖫𝖫     Q𝖱𝖱 < Q𝖫𝖱

p ∈ (0.5, 1]



p ∈ (0.5, 1]

𝒫

𝒫𝖫𝖫

𝒫𝖱𝖫

𝒫𝖫𝖱
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Counter-MDP: Safety

 vs 𝒫a𝖫 p  vs 𝒫a𝖱 p

➡ Choosing  at  is always safer than  

➡ When  is not safe,  at  can appear safe if  is followed

𝖱 s1 𝖫

π𝖫 𝖫 s1 π𝖱

𝒫

𝒫𝖫𝖱

𝒫𝖱𝖱

   𝒫𝖱𝖫 < 𝒫𝖫𝖫     𝒫𝖱𝖱 < 𝒫𝖫𝖱

  At  
 alternates “safe  unsafe” 

(p, θ) = (0.7,0.85)
𝖫 ↔



p ∈ (0.5, 1]
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Mixing Performance and Safety Causes Oscillations

‣ At  (p, θ) = (0.7, 0.85)

always yields better performance    than  

             is always riskier                   than  

appears safe if  is followed while  is not safe

𝖱
𝖱

π𝖱 π𝖫

 at 𝖫 s1

𝒫

𝒫𝖫𝖫

𝒫𝖱𝖫

𝒫𝖫𝖱

𝒫

𝒫𝖫𝖱

𝒫𝖱𝖱

 vs Qa𝖫 p  vs Qa𝖱 p  vs 𝒫a𝖫 p  vs 𝒫a𝖱 p



p ∈ (0.5, 1]
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Mixing Performance and Safety Causes Oscillations

Policy iteration on counter-MDP for (p, θ) = (0.7, 0.85)

‣ At  (p, θ) = (0.7, 0.85)

always yields better performance    than  

             is always riskier                   than  

appears safe if  is followed while  is not safe

𝖱
𝖱

π𝖱 π𝖫

 at 𝖫 s1

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

➡ Safe actions must be chosen conservatively
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What was Wrong with P4 ?

‣ Suppose    i.e.  


  


       

s ∈ ̂S 𝒫(s, ̂π(s) | ̂π) = P(s | ̂π) ≤ θ

𝒜(s | ̂π) := { a ∈ 𝒜(s) | 𝒫(s, a | ̂π) ≤ θ } ≠ Ø

̂𝒜(s) := { a ∈ 𝒜(s) | 𝒫(s, a | ̂π) ≤ P(s | ̂π)} ≠ Ø
⟹

∀π : P(s |π) ≤ P(s | ̂π) ⟹ V(s |π) ≤ V(s | ̂π )

= arg max
a∈ ̂𝒜(s)

Q(s, a | ̂π)

 ≠ arg max
a∈𝒜(s | ̂π)

Q(s, a | ̂π)

‣ P4 Fixed Point Property

⟹ ̂π(s) ∈ arg max
a∈𝒜(s | ̂π)

Q(s, a | ̂π)

‣       ➡  is more conservative than ̂𝒜(s) ⊆ 𝒜(s | ̂π) ̂𝒜(s) 𝒜(s | ̂π)

‣ P1  Uniform Optimality

⟹ ̂π(s) ∈ arg max
a ∈ ̂𝒜(s)

Q(s, a | ̂π)

𝒯( ̂π) = ̂π
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What was Wrong with P4 ?

⟹ ̂π(s) ∈ arg max
a ∈ ̂𝒜(s)

Q(s, a | ̂π)

⟹/

⟹
 in P4 has to be more conservative  e.g. 𝒜(s | ̂π) ̂𝒜(s)

➡ True for the counter MDP!

‣ P4 Fixed Point Property

‣ P1  Uniform Optimality

⟹ ̂π(s) ∈ arg max
a∈𝒜(s | ̂π)

Q(s, a | ̂π)

‣       ➡  is more conservative than ̂𝒜(s) ⊆ 𝒜(s | ̂π) ̂𝒜(s) 𝒜(s | ̂π)
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Counter-MDP with Recursive Constraints

Policy iteration on counter-MDP

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

‣ Recursive constraints      ( )














                                          

𝖢a(i) a ∈ {𝖫, 𝖱}

𝖢𝖫(1) = (𝒫𝖫𝖱 ≤ θ)

𝖢𝖫(2) = (𝒫𝖫𝖫 ≰ θ) ∧ 𝖢𝖫(1)

𝖢𝖫(3) = (𝒫𝖫𝖱 ≤ θ) ∧ 𝖢𝖫(2)

𝖢𝖫(4) = (𝒫𝖫𝖱 ≤ θ) ∧ 𝖢𝖫(3)

⋮ ⋮ ⋮

  


  


  


                              

= (𝒫𝖫𝖫 ≰ θ) ∧ (𝒫𝖫𝖱 ≤ θ)

= (𝒫𝖫𝖱 ≤ θ) ∧ (𝒫𝖫𝖫 ≰ θ)

= (𝒫𝖫𝖱 ≤ θ) ∧ (𝒫𝖫𝖫 ≰ θ)

⋮ ⋮
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Counter-MDP with Recursive Constraints

Policy iteration on counter-MDP

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

Policy iteration on counter-MDP, with recursive constraints

➡ Stabilized with recursive constraints!
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Proposed Idea

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

Policy iteration on counter-MDP, with recursive constraints

‣ Let’s extend the idea but except for policy iteration


initial/early  and  are typically random and has no information


those inaccurate constraints will be transferred to all later iterations


‣ Solution


‣  is/over-approximates -bounded probabilistic reachability


   

𝒫𝖫𝖱 𝒫𝖱𝖱

𝒫n(s, a) n

ℙ(smin(T,n) ∈ ℱ⊥ | s0a0 = sa, π)

1. axis of iteration    ➡   axis of horizon  


2. constraints at stage  :  

i = 1, 2, 3, . . . n = 1, 2, . . . , N

n 𝖢a(n |s) ← (𝒫 n(s, a) ≤ θ) ∧ 𝖢a(n − 1 |s)

 ≠ 𝒫(s, a)
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Proposed Idea: Implementation

 do                   /* initialization */ 

 

 

repeat  times                           /*  number of iters */ 

    

GetPolicy  

 Update   

return       /*        */

∀(s, a) ∈ 𝒮+ × 𝒜(s)
Q(s, a) ← 𝔼[r0 | s0a0 = sa]

𝒫(s, a) ← ℙ[smin(1,T ) ∈ ℱ⊥ | s0a0 = sa]

k k
̂𝒜(s) ← {a ∈ 𝒜(s) | 𝒫(s, a) ≤ θ} ∀s ∈ 𝒮+

π ← ( ̂𝒜 , Q, 𝒫)

(Q, 𝒫) ← (π, Q, 𝒫)

(Q, 𝒫) Q ≈ Q( ⋅ |π) 𝒫 ≈ 𝒫( ⋅ |π)

 do 

 


return 

∀s ∈ 𝒮+

π(s) ← a ∈
arg max

a∈ ̂𝒜(s)
Q(s, a)  if  ̂𝒜(s) ≠ Ø

arg min
a∈𝒜(s)

𝒫(s, a)  otherwise

π

Subroutine GetPolicy( ̂𝒜 , Q, 𝒫 )

➡ Proposed idea can be implemented on top of a naive algorithm

Naive Value Iteration

,    

 do 

 

 

return 

Q′ ← Q 𝒫′ ← 𝒫
∀(s, a) ∈ 𝒮 × 𝒜(s)

Q′ (s, a) ← 𝔼[r0 + γQ(s1, π(s1)) | s0a0 = sa]

𝒫′ (s, a) ← 𝔼[𝒫(s1, π(s1)) | s0a0 = sa]

(Q′ , 𝒫′ )

Subroutine Update(π, Q, 𝒫)
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Proposed Idea: Implementation

 do                   /* initialization */ 

 

 

repeat  times                           /*  number of iters */ 




for  do


    

GetPolicy  

 Update   

return       /*      */

∀(s, a) ∈ 𝒮+ × 𝒜(s)
Q1:N(s, a) ← 𝔼[r0 | s0a0 = sa]

𝒫1:N+1(s, a) ← ℙ[smin(1,T ) ∈ ℱ⊥ | s0a0 = sa]

k k
̂𝒜 ← 𝒜

n = 1, 2, . . . , N
̂𝒜(s) ← {a ∈ 𝒜(s) | 𝒫n(s, a) ≤ θ} ∀s ∈ 𝒮+

π ← ( ̂𝒜 , Qn, 𝒫n)

(Qn, 𝒫n+1) ← (π, Qn, 𝒫n)

(QN, 𝒫N+1) QN ≈ Q( ⋅ |π) 𝒫N+1 ⪆ ℙ(smin(T,N+1) ∈ ℱ⊥ | s0a0 = sa, π)

➡ Proposed idea can be implemented on top of a naive algorithm

Value Iteration with Recursive Constraints

̂

 is already accurate.𝒫1

Constraints are recursively given

/*  : horizon */n

 is updated from  (stable target)𝒫n+1 𝒫n

𝒫n(s, a) ≈ ℙ(smin(T,n) ∈ ℱ⊥ | s0a0 = sa, π)



p ∈ (0.5, 1]
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   Naive v.s. Proposed

‣ Experiments with CliffWorld 

Same states as in counter-MDP 

 

Transitions to 

𝒜+ = 𝒜(s1) = 𝒜(s2) = {𝖫, 𝖱, 𝖴, 𝖣}

desired direction (50%) 

random direction (50%)

‣ Naive value iteration 

 iterationsk = 50

 v.s. 𝒫(s, a | ̂π) θ  v.s. Q(s, a | ̂π) θ
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   Naive v.s. Proposed

‣ Naive value iteration 

 iterationsk = 50

 v.s. 𝒫(s, a | ̂π) θ  v.s. Q(s, a | ̂π) θ

‣ Value iteration with 
recursive constraints 

 iterations 

 horizon

k = 15

N = 15

➡ Instability / violation around  has gone, with “true  estimate”0.7 ≤ θ ≤ 0.9 =



Summary
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‣ Problem: difficulty / instability in finding policy  that is


deterministic 

uniformly optimal under safety constraints, in the sense of P1—P3 

‣ Conclusion: recursive constraints can solve instability found in naive approaches


Policy iteration (counter-MDP)


Value iteration (CliffWorld experiments)


‣ Future work: extensions to


reinforcement learning (e.g. Q-learning) with function approximation

̂π


