
Recursive Constraints to Prevent Instability
in Constrained Reinforcement Learning

Jaeyoung Lee*, Sean Sedwards*, Krzysztof Czarnecki

University of Waterloo, Canada

Presented at MoDEM Workshop, 2021* contributed equally

Introduction
2

‣ Given Markov decision processes and safety constraints

Find a policy that is

deterministic

uniformly constrained optimal

‣ Motivations

Safety-critical systems e.g. autonomous driving

No adequate existing solution

‣ Main focus

1. instability issue with reinforcement learning

2. solution: the idea of recursive constraints

̂π reaching a failure stateℙ() ≤ θ

safe and optimal in each state possible

least unsafe in each of the other states
i.e.

Finite Markov Decision Process (MDP)
3

‣ where

(finite) state space (: set of all terminal states)

(finite) action space

➡ set of all actions available from

next-state distribution , given action at state

discount rate

reward model

(𝒮+, 𝒜+, 𝒯, γ, ℛ)

𝒮+ = 𝒮 ∪ 𝒮⊥ 𝒮⊥

𝒜+

𝒜(s) : ∈ 𝒜+ s ∈ 𝒮+

𝒯(s, a) a ∈ 𝒜(s) s ∈ 𝒮

γ ∈ [0,1]

ℛ : 𝒮+ × 𝒜+ × 𝒮+ → ℝ

‣ A policy is mapping such that π : 𝒮+ → 𝒜+ π(s) ∈ 𝒜(s) ∀s ∈ 𝒮+

4

‣ Given (resp.)

policy over an MDP generates

‣ Value and Q-functions of policy

s ∈ 𝒮+ sa ∈ 𝒮+ × 𝒜(s)

π

π

V(s | π) := 𝔼(
T

∑
t=0

γt ⋅ rt s0 = s, π)
Q(s, a | π) := 𝔼(

T

∑
t=0

γt ⋅ rt s0a0 = sa, π)

sT−1 ∈ 𝒮

aT−1
a0

a1 aT

sT ∈ 𝒮⊥

. . .s0
s1 ∈ 𝒮 s2 ∈ 𝒮

r0

r1

rT−2

rT−1
rT = ℛ(sT, aT, sT)

⊥

 terminal index T : ≥ 0

and Value FunctionsStates, Actions, Rewards

 (resp.) and thereafter

 and

s0 = s s0a0 = sa at = π(st)

st+1 ∼ 𝒯(st, at) rt = ℛ(st, at, st+1) ∀t < T
where

Probabilistic Reachability of Failure States
5

‣ Let be set of all failure states

‣ Given policy

probabilistic reachability of at state and state-action

‣ Given threshold

partition the state space as where

 (safe region)

 (unsafe region)

ℱ⊥ ⊆ 𝒮⊥

π

ℱ⊥ s sa

P(s | π) := ℙ(sT ∈ ℱ⊥ s0 = s, π)
𝒫(s, a | π) := ℙ(sT ∈ ℱ⊥ s0a0 = sa, π)
θ ∈ [0, 1)

𝒮+ = S(π) ∪ F(π)

S(π) := {s ∈ 𝒮+ | P(s |π) ≤ θ}

F(π) := {s ∈ 𝒮+ | P(s |π) > θ}

Desired Properties of Constrained Optimality
6

‣ assumed existent optimal policy satisfying P1—P4, associated with

 and

P1 Uniform Optimality ➡ For any policy

P2 Second Uniform Optimality over ➡ For any policy s.t. over

P3 Monotonicity ➡ If , then

̂π : θ

̂S := S(̂π) ̂F := F(̂π)

π

P(s |π) ≤ P(s | ̂π) ⟹ V(s |π) ≤ V(s | ̂π) ∀s ∈ ̂S

V(s | ̂π) ≤ V(s |π) ⟹ P(s | ̂π) ≤ P(s |π) ∀s ∈ ̂F

̂F π π = ̂π ̂S

P(s | ̂π) ≤ P(s |π) ∀s ∈ ̂F

ϑ ≤ θ

V(s | ̂πϑ) ≤ V(s | ̂π) ∀s ∈ ̂S

P(s | ̂πϑ) ≤ P(s | ̂π) ∀s ∈ 𝒮+

Desired Properties of Constrained Optimality
7

‣ Policy iteration operator where

P4 Fixed Point Property ➡

(i) reasonable (ii) necessary for convergence

‣ However, we’ll show

1. non-existence of such a fixed point of

2. mismatch between P1 and P4

𝒯(π) := π′

π′ (s) ∈
arg max
a∈𝒜(s | π)

Q(s, a | π) if 𝒜(s | π) ≠ Ø

arg min
a∈𝒜(s)

𝒫(s, a | π) otherwise

𝒜(s | π) := { a ∈ 𝒜(s) | 𝒫(s, a |π) ≤ θ }

𝒯(̂π) = ̂π

𝒯

8
Counter-MDP

‣ State space

‣ Action space

‣ determines transition probabilities

𝒮+ = {𝖷, s1, s2, 𝖦}

𝒜 = {𝖫, 𝖱}

p > 0.5 𝒯(s, a)(s′)

 (non-terminal states)

 (terminal states)

 (failure state)

𝒮 = {s1, s2}

𝒮⊥ = {𝖷, 𝖦}

ℱ⊥ = {𝖷}

 𝒜(s1) = {𝖫, 𝖱}

𝒜(s2) = {𝖱} is not enabled at for simplicity.𝖫 s2

p ∈ (0.5, 1]

9
Counter-MDP

‣ Only two policies exist

‣ Reward model : with

‣ We investigate and at state …

ℛ(s, a, s′) = − 1(s ∉ 𝒮⊥) γ = 0.95

π𝖫 π𝖱 s1

Qa𝖫 := Q(s1, a |π𝖫) Qa𝖱 := Q(s1, a |π𝖱)

𝒫a𝖫 := 𝒫(s1, a |π𝖫) 𝒫a𝖱 := 𝒫(s1, a |π𝖱)

 —

 —

π𝖫 π𝖫(s1) = 𝖫 π𝖫(s2) = 𝖱

π𝖱 π𝖱(s1) = 𝖱 π𝖱(s2) = 𝖱

p ∈ (0.5, 1]

 vs Qa𝖱 p vs Qa𝖫 p

10
Counter-MDP: Performance

➡ Choosing at clearly yields higher Q-values than 𝖫 s1 𝖱

 Q𝖱𝖫 < Q𝖫𝖫 Q𝖱𝖱 < Q𝖫𝖱

p ∈ (0.5, 1]

p ∈ (0.5, 1]

𝒫

𝒫𝖫𝖫

𝒫𝖱𝖫

𝒫𝖫𝖱

11
Counter-MDP: Safety

 vs 𝒫a𝖫 p vs 𝒫a𝖱 p

➡ Choosing at is always safer than

➡ When is not safe, at can appear safe if is followed

𝖱 s1 𝖫

π𝖫 𝖫 s1 π𝖱

𝒫

𝒫𝖫𝖱

𝒫𝖱𝖱

 𝒫𝖱𝖫 < 𝒫𝖫𝖫 𝒫𝖱𝖱 < 𝒫𝖫𝖱

 At
 alternates “safe unsafe”

(p, θ) = (0.7,0.85)
𝖫 ↔

p ∈ (0.5, 1]

12
Mixing Performance and Safety Causes Oscillations

‣ At (p, θ) = (0.7, 0.85)

always yields better performance than

 is always riskier than

appears safe if is followed while is not safe

𝖱
𝖱

π𝖱 π𝖫

 at 𝖫 s1

𝒫

𝒫𝖫𝖫

𝒫𝖱𝖫

𝒫𝖫𝖱

𝒫

𝒫𝖫𝖱

𝒫𝖱𝖱

 vs Qa𝖫 p vs Qa𝖱 p vs 𝒫a𝖫 p vs 𝒫a𝖱 p

p ∈ (0.5, 1]

13
Mixing Performance and Safety Causes Oscillations

Policy iteration on counter-MDP for (p, θ) = (0.7, 0.85)

‣ At (p, θ) = (0.7, 0.85)

always yields better performance than

 is always riskier than

appears safe if is followed while is not safe

𝖱
𝖱

π𝖱 π𝖫

 at 𝖫 s1

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

➡ Safe actions must be chosen conservatively

14
What was Wrong with P4 ?

‣ Suppose i.e.

s ∈ ̂S 𝒫(s, ̂π(s) | ̂π) = P(s | ̂π) ≤ θ

𝒜(s | ̂π) := { a ∈ 𝒜(s) | 𝒫(s, a | ̂π) ≤ θ } ≠ Ø

̂𝒜(s) := { a ∈ 𝒜(s) | 𝒫(s, a | ̂π) ≤ P(s | ̂π)} ≠ Ø
⟹

∀π : P(s |π) ≤ P(s | ̂π) ⟹ V(s |π) ≤ V(s | ̂π)

= arg max
a∈ ̂𝒜(s)

Q(s, a | ̂π)

 ≠ arg max
a∈𝒜(s | ̂π)

Q(s, a | ̂π)

‣ P4 Fixed Point Property

⟹ ̂π(s) ∈ arg max
a∈𝒜(s | ̂π)

Q(s, a | ̂π)

‣ ➡ is more conservative than ̂𝒜(s) ⊆ 𝒜(s | ̂π) ̂𝒜(s) 𝒜(s | ̂π)

‣ P1 Uniform Optimality

⟹ ̂π(s) ∈ arg max
a ∈ ̂𝒜(s)

Q(s, a | ̂π)

𝒯(̂π) = ̂π

15
What was Wrong with P4 ?

⟹ ̂π(s) ∈ arg max
a ∈ ̂𝒜(s)

Q(s, a | ̂π)

⟹/

⟹
 in P4 has to be more conservative e.g. 𝒜(s | ̂π) ̂𝒜(s)

➡ True for the counter MDP!

‣ P4 Fixed Point Property

‣ P1 Uniform Optimality

⟹ ̂π(s) ∈ arg max
a∈𝒜(s | ̂π)

Q(s, a | ̂π)

‣ ➡ is more conservative than ̂𝒜(s) ⊆ 𝒜(s | ̂π) ̂𝒜(s) 𝒜(s | ̂π)

16
Counter-MDP with Recursive Constraints

Policy iteration on counter-MDP

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

‣ Recursive constraints ()

𝖢a(i) a ∈ {𝖫, 𝖱}

𝖢𝖫(1) = (𝒫𝖫𝖱 ≤ θ)

𝖢𝖫(2) = (𝒫𝖫𝖫 ≰ θ) ∧ 𝖢𝖫(1)

𝖢𝖫(3) = (𝒫𝖫𝖱 ≤ θ) ∧ 𝖢𝖫(2)

𝖢𝖫(4) = (𝒫𝖫𝖱 ≤ θ) ∧ 𝖢𝖫(3)

⋮ ⋮ ⋮

= (𝒫𝖫𝖫 ≰ θ) ∧ (𝒫𝖫𝖱 ≤ θ)

= (𝒫𝖫𝖱 ≤ θ) ∧ (𝒫𝖫𝖫 ≰ θ)

= (𝒫𝖫𝖱 ≤ θ) ∧ (𝒫𝖫𝖫 ≰ θ)

⋮ ⋮

17
Counter-MDP with Recursive Constraints

Policy iteration on counter-MDP

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

Policy iteration on counter-MDP, with recursive constraints

➡ Stabilized with recursive constraints!

18
Proposed Idea

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

Policy iteration on counter-MDP, with recursive constraints

‣ Let’s extend the idea but except for policy iteration

initial/early and are typically random and has no information

those inaccurate constraints will be transferred to all later iterations

‣ Solution

‣ is/over-approximates -bounded probabilistic reachability

𝒫𝖫𝖱 𝒫𝖱𝖱

𝒫n(s, a) n

ℙ(smin(T,n) ∈ ℱ⊥ | s0a0 = sa, π)

1. axis of iteration ➡ axis of horizon

2. constraints at stage :

i = 1, 2, 3, . . . n = 1, 2, . . . , N

n 𝖢a(n |s) ← (𝒫 n(s, a) ≤ θ) ∧ 𝖢a(n − 1 |s)

 ≠ 𝒫(s, a)

19
Proposed Idea: Implementation

 do /* initialization */

repeat times /* number of iters */

GetPolicy

 Update

return /* */

∀(s, a) ∈ 𝒮+ × 𝒜(s)
Q(s, a) ← 𝔼[r0 | s0a0 = sa]

𝒫(s, a) ← ℙ[smin(1,T) ∈ ℱ⊥ | s0a0 = sa]

k k
̂𝒜(s) ← {a ∈ 𝒜(s) | 𝒫(s, a) ≤ θ} ∀s ∈ 𝒮+

π ← (̂𝒜 , Q, 𝒫)

(Q, 𝒫) ← (π, Q, 𝒫)

(Q, 𝒫) Q ≈ Q(⋅ |π) 𝒫 ≈ 𝒫(⋅ |π)

 do

return

∀s ∈ 𝒮+

π(s) ← a ∈
arg max

a∈ ̂𝒜(s)
Q(s, a) if ̂𝒜(s) ≠ Ø

arg min
a∈𝒜(s)

𝒫(s, a) otherwise

π

Subroutine GetPolicy(̂𝒜 , Q, 𝒫)

➡ Proposed idea can be implemented on top of a naive algorithm

Naive Value Iteration

,

 do

return

Q′ ← Q 𝒫′ ← 𝒫
∀(s, a) ∈ 𝒮 × 𝒜(s)

Q′ (s, a) ← 𝔼[r0 + γQ(s1, π(s1)) | s0a0 = sa]

𝒫′ (s, a) ← 𝔼[𝒫(s1, π(s1)) | s0a0 = sa]

(Q′ , 𝒫′)

Subroutine Update(π, Q, 𝒫)

20
Proposed Idea: Implementation

 do /* initialization */

repeat times /* number of iters */

for do

GetPolicy

 Update

return /* */

∀(s, a) ∈ 𝒮+ × 𝒜(s)
Q1:N(s, a) ← 𝔼[r0 | s0a0 = sa]

𝒫1:N+1(s, a) ← ℙ[smin(1,T) ∈ ℱ⊥ | s0a0 = sa]

k k
̂𝒜 ← 𝒜

n = 1, 2, . . . , N
̂𝒜(s) ← {a ∈ 𝒜(s) | 𝒫n(s, a) ≤ θ} ∀s ∈ 𝒮+

π ← (̂𝒜 , Qn, 𝒫n)

(Qn, 𝒫n+1) ← (π, Qn, 𝒫n)

(QN, 𝒫N+1) QN ≈ Q(⋅ |π) 𝒫N+1 ⪆ ℙ(smin(T,N+1) ∈ ℱ⊥ | s0a0 = sa, π)

➡ Proposed idea can be implemented on top of a naive algorithm

Value Iteration with Recursive Constraints

̂

 is already accurate.𝒫1

Constraints are recursively given

/* : horizon */n

 is updated from (stable target)𝒫n+1 𝒫n

𝒫n(s, a) ≈ ℙ(smin(T,n) ∈ ℱ⊥ | s0a0 = sa, π)

p ∈ (0.5, 1]

21
 Naive v.s. Proposed

‣ Experiments with CliffWorld

Same states as in counter-MDP

Transitions to

𝒜+ = 𝒜(s1) = 𝒜(s2) = {𝖫, 𝖱, 𝖴, 𝖣}

desired direction (50%)

random direction (50%)

‣ Naive value iteration

 iterationsk = 50

 v.s. 𝒫(s, a | ̂π) θ v.s. Q(s, a | ̂π) θ

22
 Naive v.s. Proposed

‣ Naive value iteration

 iterationsk = 50

 v.s. 𝒫(s, a | ̂π) θ v.s. Q(s, a | ̂π) θ

‣ Value iteration with
recursive constraints

 iterations

 horizon

k = 15

N = 15

➡ Instability / violation around has gone, with “true estimate”0.7 ≤ θ ≤ 0.9 =

Summary
23

‣ Problem: difficulty / instability in finding policy that is

deterministic

uniformly optimal under safety constraints, in the sense of P1—P3

‣ Conclusion: recursive constraints can solve instability found in naive approaches

Policy iteration (counter-MDP)

Value iteration (CliffWorld experiments)

‣ Future work: extensions to

reinforcement learning (e.g. Q-learning) with function approximation

̂π

