

Recursive Constraints to Prevent Instability in Constrained Reinforcement Learning

Jaeyoung Lee*, Sean Sedwards*, Krzysztof Czarnecki

University of Waterloo, Canada

* contributed equally

Presented at MoDEM Workshop, 2021

Introduction

Given Markov decision processes and safety constraints.

Find a policy $\hat{\pi}$ that is

deterministic

uniformly constrained optimal i.e.

Motivations

Safety-critical systems e.g. autonomous driving No adequate existing solution

- Main focus
 - 1. instability issue with reinforcement learning
 - 2. solution: the idea of recursive constraints

safe and optimalin each state possibleleast unsafein each of the other states

 $\mathbb{P}(\text{reaching a failure state}) \leq \theta$

Finite Markov Decision Process (MDP)

• $(\mathcal{S}^+, \mathscr{A}^+, \mathscr{T}, \gamma, \mathscr{R})$ where

(finite) state space $\mathcal{S}^+ = \mathcal{S} \cup \mathcal{S}_\perp$ (\mathcal{S}_\perp : set of all terminal states)

(finite) action space \mathscr{A}^+

 $\Rightarrow \mathscr{A}(s)$: set of all actions $\in \mathscr{A}^+$ available from $s \in \mathscr{S}^+$

next-state distribution $\mathcal{T}(s, a)$, given action $a \in \mathcal{A}(s)$ at state $s \in \mathcal{S}$

discount rate $\gamma \in [0,1]$

reward model $\mathscr{R}: \mathscr{S}^+ \times \mathscr{A}^+ \times \mathscr{S}^+ \to \mathbb{R}$

• A *policy* is mapping $\pi : \mathcal{S}^+ \to \mathcal{A}^+$ such that $\pi(s) \in \mathcal{A}(s) \quad \forall s \in \mathcal{S}^+$

States, Actions, Rewards and Value Functions

• Given $s \in \mathcal{S}^+$ (resp. $sa \in \mathcal{S}^+ \times \mathcal{A}(s)$)

policy π over an MDP generates

• Value and Q-functions of policy π

$$V(s \mid \pi) := \mathbb{E}\left(\sum_{t=0}^{T} \gamma^{t} \cdot r_{t} \mid s_{0} = s, \pi\right)$$
$$Q(s, a \mid \pi) := \mathbb{E}\left(\sum_{t=0}^{T} \gamma^{t} \cdot r_{t} \mid s_{0}a_{0} = sa, \pi\right)$$

Probabilistic Reachability of Failure States

- Let $\mathscr{F}_{\perp} \subseteq \mathscr{S}_{\perp}$ be set of all failure states
- Given policy π

probabilistic reachability of \mathscr{F}_{\perp} at state *s* and state-action *sa*

$$P(s \mid \pi) := \mathbb{P}\left(s_T \in \mathscr{F}_{\perp} \mid s_0 = s, \pi\right)$$
$$\mathscr{P}(s, a \mid \pi) := \mathbb{P}\left(s_T \in \mathscr{F}_{\perp} \mid s_0 a_0 = sa, \pi\right)$$

• Given threshold $\theta \in [0, 1)$

partition the state space as $\mathcal{S}^+ = S(\pi) \cup F(\pi)$ where

 $S(\pi) := \{ s \in S^+ | P(s | \pi) \le \theta \}$ (safe region)

 $F(\pi) := \{ s \in \mathcal{S}^+ \mid P(s \mid \pi) > \theta \} \text{ (unsafe region)}$

Desired Properties of Constrained Optimality

• $\hat{\pi}$: assumed existent optimal policy satisfying **P1**-**P4**, associated with θ

$$\hat{S} := S(\hat{\pi})$$
 and $\hat{F} := F(\hat{\pi})$

P1 Uniform Optimality \Rightarrow For any policy π

$$P(s \mid \pi) \le P(s \mid \hat{\pi}) \implies V(s \mid \pi) \le V(s \mid \hat{\pi}) \quad \forall s \in \hat{S}$$
$$V(s \mid \hat{\pi}) \le V(s \mid \pi) \implies P(s \mid \hat{\pi}) \le P(s \mid \pi) \quad \forall s \in \hat{F}$$

P2 Second Uniform Optimality over $\hat{F} \rightarrow$ For any policy π s.t. $\pi = \hat{\pi}$ over \hat{S} $P(s \mid \hat{\pi}) \le P(s \mid \pi) \qquad \forall s \in \hat{F}$

P3 Monotonicity
$$\Rightarrow$$
 If $\vartheta \le \theta$, then
$$\begin{cases} V(s \mid \hat{\pi}_{\vartheta}) \le V(s \mid \hat{\pi}) & \forall s \in \hat{S} \\ P(s \mid \hat{\pi}_{\vartheta}) \le P(s \mid \hat{\pi}) & \forall s \in S^+ \end{cases}$$

Desired Properties of Constrained Optimality

• Policy iteration operator $\mathcal{T}(\pi) := \pi'$ where

$$\pi'(s) \in \begin{cases} \arg \max_{a \in \mathscr{A}(s \mid \pi)} Q(s, a \mid \pi) & \text{if } \mathscr{A}(s \mid \pi) \neq \emptyset \\ \arg \min_{a \in \mathscr{A}(s)} \mathscr{P}(s, a \mid \pi) & \text{otherwise} \end{cases}$$

$$\mathscr{A}(s \mid \pi) := \{ a \in \mathscr{A}(s) \mid \mathscr{P}(s, a \mid \pi) \le \theta \}$$

P4 Fixed Point Property $\Rightarrow \mathcal{T}(\hat{\pi}) = \hat{\pi}$

(i) reasonable (ii) necessary for convergence

- However, we'll show
 - 1. non-existence of such a fixed point of ${\mathcal T}$
 - 2. mismatch between P1 and P4

Counter-MDP

► State space $S^+ = \{X, s^1, s^2, G\}$ $\begin{cases}
S = \{s^1, s^2\} & \text{(non-terminal states)} \\
S_{\perp} = \{X, G\} & \text{(terminal states)} \\
\mathscr{F}_{\perp} = \{X\} & \text{(failure state)}
\end{cases}$

► Action space
$$\mathscr{A} = \{L, R\}$$

$$\begin{cases} \mathscr{A}(s^1) = \{L, R\} \\ \mathscr{A}(s^2) = \{R\} \leftarrow L \text{ is not enabled at } s^2 \text{ for simplicity.} \end{cases}$$

• p > 0.5 determines transition probabilities $\mathcal{T}(s, a)(s')$

Counter-MDP

► Only two policies exist
$$\begin{cases} \pi_{L} & - & \pi_{L}(s^{1}) = L & \pi_{L}(s^{2}) = R \\ \pi_{R} & - & \pi_{R}(s^{1}) = R & \pi_{R}(s^{2}) = R \end{cases}$$

- Reward model : $\mathscr{R}(s, a, s') = -\mathbf{1}(s \notin \mathscr{S}_{\perp})$ with $\gamma = 0.95$
- We investigate π_L and π_R at state s^1 ...

$$Q_{a\mathsf{L}} := Q(s^{1}, a \mid \pi_{\mathsf{L}}) \qquad Q_{a\mathsf{R}} := Q(s^{1}, a \mid \pi_{\mathsf{R}})$$
$$\mathscr{P}_{a\mathsf{L}} := \mathscr{P}(s^{1}, a \mid \pi_{\mathsf{L}}) \qquad \mathscr{P}_{a\mathsf{R}} := \mathscr{P}(s^{1}, a \mid \pi_{\mathsf{R}})$$

Counter-MDP: Performance

 \blacktriangleright Choosing \lfloor at s^1 clearly yields higher Q-values than R

Counter-MDP: Safety

- \blacktriangleright Choosing R at s^1 is always safer than L
- → When π_{L} is not safe, L at s^{1} can appear safe if π_{R} is followed

Mixing Performance and Safety Causes Oscillations

• At $(p, \theta) = (0.7, 0.85)$

Mixing Performance and Safety Causes Oscillations

• At $(p, \theta) = (0.7, 0.85)$

Policy iteration on counter-MDP for $(p, \theta) = (0.7, 0.85)$

Iteration <i>i</i>		1	2	3	4	5	• • •
Given policy		π_{R}	π_{L}	π_{R}	π_{L}	π_{R}	• • •
Constraints	L	$\mathscr{P}_{LR} \approx 0.82 \le \theta = 0.85$	$\mathscr{P}_{LL} \approx 0.89 \nleq \theta$	$\mathcal{P}_{LR} \leq \theta$	$\mathscr{P}_{LL} \nleq \theta$	$\mathcal{P}_{LR} \leq \theta$	• • •
	R	$\mathscr{P}_{RR} \approx 0.59 \le \theta = 0.85$	$\mathscr{P}_{RL} \approx 0.73 \le \theta$	$\mathcal{P}_{RR} \leq \theta$	$\mathcal{P}_{RL} \leq \theta$	$\mathscr{P}_{RR} \leq \theta$	•••

Safe actions must be chosen conservatively

What was Wrong with P4?

• Suppose $s \in \hat{S}$ i.e. $\mathscr{P}(s, \hat{\pi}(s) | \hat{\pi}) = P(s | \hat{\pi}) \le \theta$

$$\implies \begin{cases} \mathscr{A}(s \mid \hat{\pi}) := \left\{ a \in \mathscr{A}(s) \mid \mathscr{P}(s, a \mid \hat{\pi}) \leq \theta \right\} \neq \emptyset \\ \hat{\mathscr{A}}(s) := \left\{ a \in \mathscr{A}(s) \mid \mathscr{P}(s, a \mid \hat{\pi}) \leq P(s \mid \hat{\pi}) \right\} \neq \emptyset \end{cases}$$

- $\hat{\mathscr{A}}(s) \subseteq \mathscr{A}(s \mid \hat{\pi}) \quad \Rightarrow \hat{\mathscr{A}}(s)$ is more conservative than $\mathscr{A}(s \mid \hat{\pi})$
- ► P4 Fixed Point Property $\mathcal{T}(\hat{\pi}) = \hat{\pi}$

$$\implies \hat{\pi}(s) \in \underset{a \in \mathscr{A}(s \mid \hat{\pi})}{\arg \max} Q(s, a \mid \hat{\pi}) = \underset{a \in \widehat{\mathscr{A}}(s)}{\arg \max} Q(s, a \mid \hat{\pi})$$

► P1 Uniform Optimality $\forall \pi : P(s \mid \pi) \le P(s \mid \hat{\pi}) \implies V(s \mid \pi) \le V(s \mid \hat{\pi})$

$$\implies \hat{\pi}(s) \in \underset{a \in \hat{\mathscr{A}}(s)}{\operatorname{arg\,max}} Q(s, a \mid \hat{\pi}) \neq \underset{a \in \mathscr{A}(s \mid \hat{\pi})}{\operatorname{arg\,max}} Q(s, a \mid \hat{\pi})$$

What was Wrong with P4?

- $\hat{\mathscr{A}}(s) \subseteq \mathscr{A}(s \mid \hat{\pi}) \quad \Rightarrow \hat{\mathscr{A}}(s)$ is more conservative than $\mathscr{A}(s \mid \hat{\pi})$
- ► P4 Fixed Point Property $\implies \hat{\pi}(s) \in \underset{a \in \mathscr{A}(s \mid \hat{\pi})}{\arg \max} Q(s, a \mid \hat{\pi})$

► P1 Uniform Optimality $\implies \hat{\pi}(s) \in \arg \max_{a \in \hat{\mathscr{A}}(s)} Q(s, a \mid \hat{\pi})$

 $\mathscr{A}(s \mid \hat{\pi})$ in **P4** has to be more conservative e.g. $\hat{\mathscr{A}}(s)$

➡ True for the counter MDP!

Counter-MDP with Recursive Constraints

Policy iteration on counter-MDP

Iteration <i>i</i>		1	2	3	4	5	•••
Given policy		π_{R}	π_{L}	π_{R}	π_{L}	π_{R}	• • •
Constraints	L	$\mathscr{P}_{LR} \approx 0.82 \le \theta = 0.85$	$\mathscr{P}_{LL} \approx 0.89 \nleq \theta$	$\mathcal{P}_{LR} \leq \theta$	$\mathscr{P}_{LL} \nleq \theta$	$\mathcal{P}_{LR} \leq \theta$	• • •
	R	$\mathcal{P}_{RR} \approx 0.59 \le \theta = 0.85$	$\mathcal{P}_{RL} \approx 0.73 \le \theta$	$\mathcal{P}_{RR} \leq \theta$	$\mathcal{P}_{RL} \leq \theta$	$\mathcal{P}_{RR} \leq \theta$	•••

• Recursive constraints $C_a(i)$ $(a \in \{L, R\})$

$$\begin{split} \mathsf{C}_{\mathsf{L}}(1) &= (\mathscr{P}_{\mathsf{LR}} \leq \theta) \\ \mathsf{C}_{\mathsf{L}}(2) &= (\mathscr{P}_{\mathsf{LL}} \nleq \theta) \land \mathsf{C}_{\mathsf{L}}(1) = (\mathscr{P}_{\mathsf{LL}} \nleq \theta) \land (\mathscr{P}_{\mathsf{LR}} \leq \theta) \\ \mathsf{C}_{\mathsf{L}}(3) &= (\mathscr{P}_{\mathsf{LR}} \leq \theta) \land \mathsf{C}_{\mathsf{L}}(2) = (\mathscr{P}_{\mathsf{LR}} \leq \theta) \land (\mathscr{P}_{\mathsf{LL}} \nleq \theta) \\ \mathsf{C}_{\mathsf{L}}(4) &= (\mathscr{P}_{\mathsf{LR}} \leq \theta) \land \mathsf{C}_{\mathsf{L}}(3) = (\mathscr{P}_{\mathsf{LR}} \leq \theta) \land (\mathscr{P}_{\mathsf{LL}} \nleq \theta) \\ & \vdots \qquad \end{split}$$

Counter-MDP with Recursive Constraints

Policy iteration on counter-MDP

Iteration <i>i</i>		1	2	3	4	5	• • •
Given policy		π_{R}	π_{L}	π_{R}	π_{L}	π_{R}	• • •
Constraints	L	$\mathscr{P}_{LR} \approx 0.82 \le \theta = 0.85$	$\mathscr{P}_{LL} \approx 0.89 \nleq \theta$	$\mathcal{P}_{LR} \leq \theta$	$\mathscr{P}_{LL} \nleq \theta$	$\mathcal{P}_{LR} \leq \theta$	• • •
	R	$\mathscr{P}_{RR} \approx 0.59 \le \theta = 0.85$	$\mathcal{P}_{RL} \approx 0.73 \le \theta$	$\mathcal{P}_{RR} \leq \theta$	$\mathcal{P}_{RL} \leq \theta$	$\mathscr{P}_{RR} \leq \theta$	• • •

Policy iteration on counter-MDP, with recursive constraints

Iteration <i>i</i>		1	2	3	4	• • •
Given policy		π_{R}	π_{L}	π_{R}	π_{R}	• • •
Constraints L R	L	$C_{L} \leftarrow (\mathscr{P}_{LR} \le \theta)$	$\mathbf{C}_{L} \leftarrow (\mathscr{P}_{LL} \nleq \theta) \land \mathbf{C}_{L}$	$\mathbf{C}_{L} \leftarrow (\mathscr{P}_{LR} \leq \theta) \land \mathbf{C}_{L}$	$\frac{C_{L}}{C_{L}} \leftarrow (\mathscr{P}_{LR} \leq \theta) \land \frac{C_{L}}{C_{L}}$	• • •
	R	$C_{R} \leftarrow (\mathcal{P}_{RR} \le \theta)$	$C_{R} \leftarrow (\mathscr{P}_{RL} \leq \theta) \land C_{R}$	$C_{R} \leftarrow (\mathscr{P}_{RR} \leq \theta) \land C_{R}$	$C_{R} \leftarrow (\mathscr{P}_{RR} \le \theta) \land C_{R}$	• • •

Stabilized with recursive constraints!

Proposed Idea

Policy iteration on counter-MDP, with recursive constraints

Iteration <i>i</i>		1	2	3	4	• • •
Given policy		π_{R}	π_{L}	π_{R}	π_{R}	• • •
L	L	$C_{L} \leftarrow (\mathscr{P}_{LR} \le \theta)$	$C_{L} \leftarrow (\mathscr{P}_{LL} \nleq \theta) \land C_{L}$	$\mathbf{C}_{L} \leftarrow (\mathscr{P}_{LR} \leq \theta) \land \mathbf{C}_{L}$	$\mathbf{C}_{L} \leftarrow (\mathscr{P}_{LR} \leq \theta) \land \mathbf{C}_{L}$	•••
Constraints	R	$C_{R} \leftarrow (\mathscr{P}_{RR} \le \theta)$	$C_{R} \leftarrow (\mathscr{P}_{RL} \le \theta) \land C_{R}$	$C_{R} \leftarrow (\mathscr{P}_{RR} \le \theta) \land C_{R}$	$C_{R} \leftarrow (\mathscr{P}_{RR} \le \theta) \land C_{R}$	•••

Let's extend the idea but except for policy iteration

initial/early \mathscr{P}_{LR} and \mathscr{P}_{RR} are typically random and has no information those inaccurate constraints will be transferred to all later iterations

Solution ↓ Solution ↓ 1. axis of iteration i = 1, 2, 3, ... → axis of horizon n = 1, 2, ..., N ↓ 2. constraints at stage n : C_a(n | s) ← (𝔅ⁿ(s, a) ≤ θ) ∧ C_a(n − 1 | s)

• $\mathcal{P}^n(s, a)$ is/over-approximates *n*-bounded probabilistic reachability

$$\mathbb{P}(s_{\min(T,n)} \in \mathcal{F}_{\perp} \mid s_0 a_0 = sa, \pi) \neq \mathcal{P}(s,a)$$

Proposed Idea: Implementation

Proposed idea can be implemented on top of a naive algorithm

Subroutine GetPolicy($\hat{\mathscr{A}}, Q, \mathscr{P}$)					
$\forall s \in \mathcal{S}^+ \operatorname{do}$					
$\pi(s) \leftarrow a \in \left\{ \right.$	$\underset{a \in \hat{\mathscr{A}}(s)}{\operatorname{argmax}} Q(s, a)$	$\text{if } \hat{\mathscr{A}}(s) \neq \emptyset$			
	$\arg\min_{a\in\mathscr{A}(s)}\mathscr{P}(s,a)$	otherwise			
return π					
Subroutine Updat	$e(\pi, Q, \mathscr{P})$				
$Q' \leftarrow Q, \mathscr{P}' \leftarrow \mathscr{P}$					
$\forall (s,a) \in \mathcal{S} \times \mathscr{A}(s) \text{ do}$					
$Q'(s,a) \leftarrow \mathbb{E}[r_0 + \gamma Q(s_1, \pi(s_1)) \mid s_0 a_0 = sa]$					
$ \mathcal{P}'(s,a) \leftarrow \mathbb{E}[\mathcal{P}(s_1,\pi(s_1)) \mid s_0 a_0 = sa] $					
return (O', \mathcal{P}')					

Proposed Idea: Implementation

Proposed idea can be implemented on top of a naive algorithm

Value Iteration with Recursive Constraints $\forall (s, a) \in \mathcal{S}^+ \times \mathscr{A}(s) \text{ do } /* \text{ initialization } */$ $Q^{1:N}(s,a) \leftarrow \mathbb{E}[r_0 \mid s_0 a_0 = sa]$ $\mathscr{P}^{1:N+1}(s,a) \leftarrow \mathbb{P}[s_{\min(1,T)} \in \mathscr{F}_{\perp} \mid s_0 a_0 = sa] \longrightarrow \mathscr{P}^1 \text{ is already accurate.}$ **repeat** *k* **times** /* *k* number of iters */ $\hat{\mathscr{A}} \leftarrow \mathscr{A}$ for n = 1, 2, ..., N do /* n : horizon */ $\hat{\mathscr{A}}(s) \leftarrow \{a \in \hat{\mathscr{A}}(s) \mid \mathscr{P}^n(s, a) \le \theta\} \quad \forall s \in \mathscr{S}^+ \longrightarrow \text{Constraints are recursively given}$ $\pi \leftarrow \text{GetPolicy}(\hat{\mathscr{A}}, Q^n, \mathscr{P}^n)$ $\mathscr{P}^{n}(s,a) \approx \mathbb{P}(s_{\min(T,n)} \in \mathscr{F}_{\perp} \mid s_{0}a_{0} = sa, \pi)$ $(Q^n, \mathscr{P}^{n+1}) \leftarrow \text{Update}(\pi, Q^n, \mathscr{P}^n) \longrightarrow \mathscr{P}^{n+1}$ is updated from \mathscr{P}^n (stable target) $\operatorname{return} \left(Q^{N}, \mathscr{P}^{N+1} \right) \quad /^{*} Q^{N} \approx Q(\cdot \mid \pi) \quad \mathscr{P}^{N+1} \gtrsim \mathbb{P}(s_{\min(T,N+1)} \in \mathscr{F}_{\perp} \mid s_{0}a_{0} = sa, \pi) * /$

Naive v.s. Proposed

Naive v.s. Proposed

→ Instability / violation around $0.7 \le \theta \le 0.9$ has gone, with "true = estimate"

Summary

• **Problem**: difficulty / instability in finding policy $\hat{\pi}$ that is

deterministic

uniformly optimal under safety constraints, in the sense of **P1-P3**

 Conclusion: recursive constraints can solve instability found in naive approaches Policy iteration (counter-MDP)

Value iteration (CliffWorld experiments)

• Future work: extensions to

reinforcement learning (e.g. Q-learning) with function approximation