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Abstract
In decision-making, reinforcement learning (RL)
and control theory are two main disciplines in
which PI methods have been studied for solving
optimal decision/control problems, respectively.
Motivated by PI for optimal control in continuous
time and space (CTS), this work extends the re-
inforcement learning (RL) framework to CTS and
then proposes the corresponding PI with funda-
mental theory. Together with the PIs in both dis-
ciplines, the theoretical approach and frameworks
behind them will be extensively compared and dis-
cussed in this interactive talk.

Common Backgrounds

Continuous time and space (CTS) settings:
1 state space X .= Rn;
2 action space U ⊆ Rm is an m-dim. manifold with boundary;
3 time space R+ = [0,∞).

Continuous feedback interaction components
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Real physical world is modeled in CTS as
Ẋt = f (Xt, Ut) + (noise terms)

The PIs discussed in this talk from both disciplines
ignore the noise terms and consider f expressed as

f (Xt, Ut) = fc(Xt, Ut)︸ ︷︷ ︸
known

+ fd(Xt)︸ ︷︷ ︸
unknown

.

Policy iteration (PI), a fundamental principle in RL, is
an iterative method of alternating the two procedures:

Policy	Evalua,on	
(as	a	role	of	cri$c)	

Policy	Improvement	
(as	a	role	of	actor)	

(value	fnc)	

v⇡i

(next	policy)	

⇡i+1

Similar concept and algorithms exist in the control theory
discipline from 1960s, but their connection to PI is not fully
recognized until 2000s. On the other hand, in RL discipline,

State/Action Discrete Continuous
Time Discrete Continuous Discrete Continuous

Study on PI Well-developed PI methods and theory ??

In RL discipline, value function (VF) vπ : X → R
is defined as

vπ(x) .= Eπ

[∫ ∞
t

γτ−tR(Xτ , Uτ) dτ

∣∣∣∣∣Xt = x
]

for
a discount factor γ ∈ (0, 1);

an upper-bounded reward fnc R :X×U→R.
Here, vπ is always upper-bounded (∵ so is R).
In control discipline, they consider the VF with
“γ = 1 and a negative definite reward fnc R,”
which is strongly connected to stability theory.

Definition (admissible policy): a policy π is said to
be admissible if vπ(x) is finite ∀x ∈ X .

The goal of PI in both RL and optimal control
disciplines is to find a best admissible policy π∗
(and the corresponding optimal VF v∗) such that

vπ(x) ≤ v∗(x) ∀x ∈ X .

Problem Settings in discrete versus continuous domains

Discrete & Stochastic Continuous & Deterministic
(e.g., a finite MDP) Ẋt = f (Xt, Ut)

Spaces S , A, t X = Rn, U ⊆ Rm, t ∈ [0,∞)

Reward R
Ra

ss′

(bounded)
R(x, u)

(upper-bounded)

Optimal sol.
(v∗ and π∗)

well-defined
(always)

well-defined
(assumed)

State trj.
(Eπ[Xτ ])

well-defined
(always)

well-defined
(by stability theory or assumed)

Others N/A continuity/regularity of fncs

Brief Review of Stability Theory

In stability framework, it is assumed that there is
a stationary point X∗ = 0 ∈ X for U∗ = 0 ∈ U s.t.

X∗ = f (X∗, U∗).
Any non-zero (X∗, U∗) can be transformed to (0, 0).
The objective is to stabilize X∗ = 0 in the sense that:
1 a small initial state perturbation from X∗ at any time t

gives a small perturbation of Xt+τ for all τ ≥ 0 from X∗;
2 limτ→∞Xt+τ = X∗ for all such initial state Xt ∈ X .
Any policy π achieving it is said to be stabilizing.
Closely related to PI in control field, but not in the
RL discipline, is (Lyapunov’s) stability theorem:
• If there exist two negative definite fncs v, w : X → R s.t.
∇v(x)f (x, π(x)) ≥ −w(x) ∀x ∈ X , then π is stabilizing.

VFs in Control and RL Disciplines

In control discipline,
every admissible policy π is stabilizing

by Lyapunov’s stability theorem with v = vπ and
w = R(·, π(·)). Here, stability (and thus admissi-
bility) ensures the existence of the bounded unique
state trj. Xτ for all future time τ .
The discounted VF in RL discipline is not related
to stability since there is no bridge between them.
Our RL problem in CTS is more general but
beyond the current stability theory, which forces
us to assume the existence of the unique state trj.
Xτ for all future time τ .
Bellman equation: for any given admissible π,

Eπ

[
δt(vπ)

∣∣∣Xt = x
]

= 0 for all x ∈ X ,

where the Bellman error δt(vπ) is given by∫ t′

t
γτ−tR(Xτ , Uτ)dτ︸ ︷︷ ︸
accumulated reward

+ γ∆t·vπ(Xt′)︸ ︷︷ ︸
next value

− vπ(Xt)︸ ︷︷ ︸
current value

(∆t
.= t′ − t: difference b.t.w the time steps).

v = vπ if v satisfies the Bellman equation and

lim
τ→∞ γτ−t · Eπ

[
v(Xt+τ)

∣∣∣Xt = x
]

= 0 ∀x ∈ X ,

which is true in optimal control when v(X∗) = 0 by
stability; for this in RL problem, v(Xt+τ) should
not grow in time with the rate higher than 1/γ.

Policy Improvement & Optimality

Policy improvement in CTS is to find an improved
policy π′ satisfying

π′(x) ∈ arg max
Ut∈U

lim
∆t→0

E
[
δt(vπ)/∆t

∣∣∣Xt = x
]
,

which is assumed to exist and can be expressed as
π′(x) ∈ arg max

u∈U

(
R(x, u) +∇vπ(x)fc(x, u)

)
.

Policy improvement in both disciplines is partially
model-free and yields the improved policy π′—if π
is admissible, then so is π′ and

“vπ(x) ≤ vπ′(x) for all x ∈ X .”
In the case γ = 1 w/o stability theory, there needs
the condition Eπ′[vπ(Xt+τ)|Xt = x] ≤ 0 in the
limit τ →∞, which is true in stability framework.

By principle of optimality, v∗ in RL and control
disciplines satisfies the optimality equation known
as Hamilton-Jacobi-Bellman equation:
0 = max

Ut∈U
lim

∆t→0
E
[
δt(v∗)/∆t

∣∣∣Xt = x
]

for all x ∈ X

(it is assumed that v∗ is the unique HJB solution).

Policy Iteration for RL in CTS

Initialize: i← 0, ∆t > 0, and an admissible policy π0;
repeat
Evaluation: find vi s.t. Eπi

[
δt(vi)

∣∣∣Xt = x
]

= 0 ∀x ∈ X ;
Improvement: find a next policy πi+1 s.t.

πi+1(x) ∈ arg max
u∈U

(
R(x, u) +∇vi(x)fc(x, u)

)
∀x ∈ X ;

i← i + 1;
until convergence is met.

Assumption 1. ∀i ∈ N ∪ {0}: if πi is admissible,
lim

τ→∞
γτ−t· Eπi

[
vi(Xt+τ )

∣∣∣Xt = x
]

= 0 ∀x ∈ X .

Theorem 1. The sequences {πi} and {vi} generated by PI
under the above assumption satisfy the followings:

1 ∀i ∈ {0, 1, 2, · · · }:
{

πi+1 is admissible and vi = vπi
;

vπi
(x) ≤ vπi+1(x) ≤ v∗(x) ∀x ∈ X ;

2 vi converges to v∗
• w.r.t. a metric on the space of admissible VFs;
• pointwisely on X and uniformly on any compact Ω ⊂ X

(under certain continuity & admissibility conditions).

PI for Optimal Control in CTS

PI and its properties in control field is same as that
in the RL discipline shown above, except that
1 (Pros) Assumption 1 is true (and thus not required);
2 (Pros) Xτ is uniquely defined for all future time τ ;
3 (Pros) all generated policies πi+1 are stabilizing;
4 (Cons) the initial policy π0 is required to be stabilizing;
5 (Cons) by stability-based approach, γ must be equal to 1,

and there are restrictions on f and R.

Concluding Remarks

▶ PI in optimal control is not suitable for RL;
▶ stability theory cannot cover the discounted cases;
▶ we establish PI for RL problems, theoretical RL

backgrounds, in CTS w/o employing stability thm;
▶ there is a gap b.t.w. stability and RL frameworks.


