
Further Extensions to Off-policy PI

Off-policy PI: the key idea to model-free RL under arbitrary exploration.

Variants of the TD error in off-policy PI:

• Original TD error:

δt(vπ)
.
=

∫ t′

t

γτ−tR(Xτ , Uτ ) dτ + γ∆t ·vπ(Xt′)− vπ(Xt)

• TD error with on- and off-policy hybrid reward:

δπt (vπ)
.
=

∫ t′

t

γτ−tR(Xτ , π(Xτ )) dτ + γ∆t ·vπ(Xt′)− vπ(Xt)

• TD error with a general discounting factor β > 0:

δt,β(vπ)
.
=

∫ t′

t

βτ−tR(Xτ , Uτ ) dτ + β∆t ·vπ(Xt′)− vπ(Xt)

•

{
δt(vπ) = δπt (vπ) = δt,γ(vπ) = 0 if µ = π (on-policy case)

δt(vπ) ̸= δπt (vπ) ̸= δt,β(vπ) ̸= 0 in general off-policy case



Off-policy Bellman Equation and Policy Evaluation

▶ Off-policy Bellman equation: for any admissible π,

0 = Eµ

[
δofft (vπ)− Eπ

t

∣∣Xt = x (and Ut = u)
]
,

{
δofft : one of the off-policy TD errors δt(vπ), δ

π
t (vπ), and δt,β(vπ);

Eπ
t : the residual determined depending on δofft .

▶ Evaluation: solve the off-policy Bellman equation
over the spaces X × U (API, QPI), X (EPI), and X × Ufinite (CPI) with

▶ δofft equal to δt (API), δπ (EPI, CPI), and δt,β (QPI).

▶ Eπ
t becomes zero when µ = π and contains the term:

aπ (API), qπ (QPI), ∇vπ ·fc (EPI), cπ (CPI).



Explorized PI (EPI) / C-Policy-Iteration (CPI) from Control Discipline

▶ EPI, the direct off-policy extension of the on-policy PI,
estimates the value function vπ under the behavior policy µ.

• Improvement is exactly same to on-policy PI.

▶ CPI, the model-free EPI under the u-AC setting,
estimates vπ and the C-function cπ defined by

cπ(x)
.
= FT

c (x)∇vTπ (x).

• In the u-AC setting:

{
fc(x, u) = Fc(x)u
R(x, u) = R0(x)− S(u)

}
,

(with strictly convex S)

Improvement: π′(x) = σ(cπ(x)) with σT .
= ∇S−1.

• Ufinite
.
= {uj}mj=0 ⊂ U , where uj ’s are vectors in U s.t.

span{uj − uj−1}mj=1 = Rm.



Advantage PI (API) / Q-Policy-Iteration (QPI) from RL Discipline

▶ API, the ideal PI-form of advantage updating,
estimates vπ and the advantage function aπ defined by

aπ(x, u)
.
= lim

∆t→0
E
[
δt(vπ)/∆t

∣∣Xt = x,Ut = u
]

and then improves the policy using the estimate of aπ.

• Normalization property: aπ(x, π(x)) = 0 for all x ∈ X .

• Improvement: π′(x) ∈ argmax
u∈U

aπ(x, u) ∀x ∈ X .

QPI, the ideal PI-form of Q-learning in CTS,
estimates the Q-function qπ defined by

qπ(x, u)
.
= κ · vπ(x) + aπ(x, u) for some κ ̸= 0

under the different discounting β
.
= γeκ ̸= γ.

• Similarly to discrete case, vπ(x) = qπ(x, π(x))/κ ∀x ∈ X .

• Improvement: π′(x) ∈ argmax
u∈U

qπ(x, u) ∀x ∈ X .



Inverted-Pendulum Simulations

▶ Inverted-pendulum dynamics: θ̈τ = −0.01θ̇τ + 9.8 sin θτ + Uτ

▶ State space (n = 2): X = R2 with Xτ = [ θτ θ̇τ ]
T

▶ Action space (m = 1): U = {−5 ≤ Uτ ≤ 5} ⊂ R;

▶ Learning objective: swing-up and balance the pendulum at θτ = 2kπ.

▶ VF parameters: γ = 0.1 and R(x, u) = 102 cosx1 − S(u)

▶ S(u) =
(
52/2

)
·ln

(
u
u+
+ · uu−

−
)
with u± = 1± u/5

▶ Simulation methods:

▶ ∆t = 10 [ms], π0(x) = 0, β = 1

▶ the fncs all approximated by RBFNs in closed and bounded subsets:

▶ |θτ | ≤ π, |θ̇τ | ≤ 6, |Uτ | ≤ 5

▶ RBF actor-network for policy improvement of IAPI.



Inverted-Pendulum Simulations

(a) API (b) QPI (c) EPI (d) CPI

Fig. 1. The value fnc vi(x) at i = 10 (position θτ versus velocity θ̇τ )
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(a) Pos. trj. θτ (b) Vel. trj. θ̇τ

Fig. 2 The state trjs. generated under

{
1. the init. condition X0 = [ 1.1π 0 ]T;

2. the obtained policy πi at i = 10.


