Further Extensions to Off-policy PI

- Off-policy PI: the key idea to model-free RL under arbitrary exploration.
- Variants of the TD error in off-policy PI:
 - Original TD error:

$$\delta_t(v_\pi) \doteq \int_t^{t'} \gamma^{\tau-t} R(X_\tau, U_\tau) \, d\tau + \gamma^{\Delta t} \cdot v_\pi(X_{t'}) - v_\pi(X_t)$$

• TD error with on- and off-policy hybrid reward:

$$\delta_t^{\pi}(v_{\pi}) \doteq \int_t^{t'} \gamma^{\tau-t} R(X_{\tau}, \pi(X_{\tau})) \, d\tau + \gamma^{\Delta t} \cdot v_{\pi}(X_{t'}) - v_{\pi}(X_t)$$

• TD error with a general discounting factor $\beta > 0$:

$$\delta_{t,\beta}(v_{\pi}) \doteq \int_{t}^{t'} \beta^{\tau-t} R(X_{\tau}, U_{\tau}) \, d\tau + \beta^{\Delta t} \cdot v_{\pi}(X_{t'}) - v_{\pi}(X_{t})$$

$$\begin{cases} \delta_t(v_\pi) = \delta_t^{\pi}(v_\pi) = \delta_{t,\gamma}(v_\pi) = 0 \text{ if } \mu = \pi \text{ (on-policy case)} \\ \delta_t(v_\pi) \neq \delta_t^{\pi}(v_\pi) \neq \delta_{t,\beta}(v_\pi) \neq 0 \text{ in general off-policy case} \end{cases}$$

Off-policy Bellman Equation and Policy Evaluation

• Off-policy Bellman equation: for any admissible π ,

$$0 = \mathbb{E}_{\mu} \left[\delta_t^{\mathsf{off}}(v_{\pi}) - \mathcal{E}_t^{\pi} \, \big| X_t = x \text{ (and } U_t = u) \right],$$

 $\left\{ \begin{array}{l} \delta^{\rm off}_t: {\rm one \ of \ the \ off-policy \ TD \ errors \ } \delta_t(v_\pi), \ \delta^{\pi}_t(v_\pi), \ {\rm and \ } \delta_{t,\beta}(v_\pi); \\ \mathcal{E}^{\pi}_t: {\rm the \ residual \ determined \ depending \ on \ } \delta^{\rm off}_t. \end{array} \right.$

- ► Evaluation: solve the off-policy Bellman equation over the spaces X × U (API, QPI), X (EPI), and X × U_{finite} (CPI) with
 - δ_t^{off} equal to δ_t (API), δ^{π} (EPI, CPI), and $\delta_{t,\beta}$ (QPI).
 - \mathcal{E}_t^{π} becomes zero when $\mu = \pi$ and contains the term:

 a_{π} (API), q_{π} (QPI), $\nabla v_{\pi} \cdot f_{c}$ (EPI), c_{π} (CPI).

Explorized PI (EPI) / C-Policy-Iteration (CPI) from Control Discipline

- **EPI**, the direct off-policy extension of the on-policy PI, estimates the value function v_{π} under the behavior policy μ .
 - Improvement is exactly same to on-policy PI.
- CPI, the model-free EPI under the u-AC setting, estimates v_π and the C-function c_π defined by

 $c_{\pi}(x) \doteq F_{\mathsf{c}}^{\mathsf{T}}(x) \nabla v_{\pi}^{\mathsf{T}}(x).$

• In the *u*-AC setting: (with strictly convex S) $\left\{ \begin{array}{l} f_{\mathsf{c}}(x,u) = F_{\mathsf{c}}(x)u\\ R(x,u) = R_0(x) - S(u) \end{array} \right\}$,

Improvement: $\pi'(x) = \sigma(c_{\pi}(x))$ with $\sigma^{\mathsf{T}} \doteq \nabla S^{-1}$.

• $\mathcal{U}_{\text{finite}} \doteq \{u_j\}_{j=0}^m \subset \mathcal{U}$, where u_j 's are vectors in \mathcal{U} s.t.

$$\operatorname{span}\{u_j - u_{j-1}\}_{j=1}^m = \mathbb{R}^m.$$

Advantage PI (API) / Q-Policy-Iteration (QPI) from RL Discipline

► API, the ideal PI-form of advantage updating, estimates v_{π} and the advantage function a_{π} defined by

$$a_{\pi}(x, u) \doteq \lim_{\Delta t \to 0} \mathbb{E} \left[\delta_t(v_{\pi}) / \Delta t \left| X_t = x, U_t = u \right] \right]$$

and then improves the policy using the estimate of a_{π} .

- Normalization property: $a_{\pi}(x, \pi(x)) = 0$ for all $x \in \mathcal{X}$.
- Improvement: $\pi'(x) \in \underset{u \in \mathcal{U}}{\arg \max a_{\pi}(x, u)} \quad \forall x \in \mathcal{X}.$
- **QPI**, the ideal PI-form of Q-learning in CTS, estimates the Q-function q_{π} defined by

$$q_{\pi}(x,u) \doteq \kappa \cdot v_{\pi}(x) + a_{\pi}(x,u)$$
 for some $\kappa \neq 0$

under the different discounting $\beta \doteq \gamma e^{\kappa} \neq \gamma$.

- Similarly to discrete case, $v_{\pi}(x) = q_{\pi}(x, \pi(x)) / \kappa \ \forall x \in \mathcal{X}$.
- Improvement: $\pi'(x) \in \underset{u \in \mathcal{U}}{\arg \max} q_{\pi}(x, u) \ \forall x \in \mathcal{X}.$

Inverted-Pendulum Simulations

- Inverted-pendulum dynamics: $\ddot{\theta}_{\tau} = -0.01 \dot{\theta}_{\tau} + 9.8 \sin \theta_{\tau} + U_{\tau}$
 - State space (n = 2): $\mathcal{X} = \mathbb{R}^2$ with $X_{\tau} = [\theta_{\tau} \ \dot{\theta}_{\tau}]^{\mathsf{T}}$
 - Action space (m = 1): $\mathcal{U} = \{-5 \leq U_{\tau} \leq 5\} \subset \mathbb{R};$
- Learning objective: swing-up and balance the pendulum at $\theta_{\tau} = 2k\pi$.
- ▶ VF parameters: $\gamma = 0.1$ and $R(x, u) = 10^2 \cos x_1 S(u)$
 - $S(u) = (5^2/2) \cdot \ln (u_+^{u_+} \cdot u_-^{u_-})$ with $u_{\pm} = 1 \pm u/5$
- Simulation methods:
 - $\Delta t = 10 \text{ [ms]}, \ \pi_0(x) = 0, \ \beta = 1$
 - the fncs all approximated by RBFNs in closed and bounded subsets:

$$\bullet ||\theta_{\tau}| \leq \pi, |\dot{\theta}_{\tau}| \leq 6, |U_{\tau}| \leq 5$$

RBF actor-network for policy improvement of IAPI.

Inverted-Pendulum Simulations

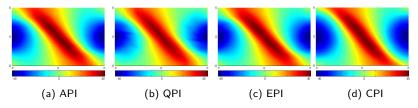


Fig. 1. The value fnc $v_i(x)$ at i = 10 (position θ_{τ} versus velocity $\dot{\theta}_{\tau}$)

